Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation
- URL: http://arxiv.org/abs/2308.07931v2
- Date: Sat, 30 Dec 2023 01:10:41 GMT
- Title: Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation
- Authors: William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling,
Phillip Isola
- Abstract summary: This work bridges the 2D-to-3D gap for robotic manipulation by leveraging distilled feature fields to combine accurate 3D geometry with rich semantics from 2D foundation models.
We present a few-shot learning method for 6-DOF grasping and placing that harnesses these strong spatial and semantic priors to achieve in-the-wild generalization to unseen objects.
- Score: 44.58709274218105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised and language-supervised image models contain rich knowledge
of the world that is important for generalization. Many robotic tasks, however,
require a detailed understanding of 3D geometry, which is often lacking in 2D
image features. This work bridges this 2D-to-3D gap for robotic manipulation by
leveraging distilled feature fields to combine accurate 3D geometry with rich
semantics from 2D foundation models. We present a few-shot learning method for
6-DOF grasping and placing that harnesses these strong spatial and semantic
priors to achieve in-the-wild generalization to unseen objects. Using features
distilled from a vision-language model, CLIP, we present a way to designate
novel objects for manipulation via free-text natural language, and demonstrate
its ability to generalize to unseen expressions and novel categories of
objects.
Related papers
- 3D Feature Distillation with Object-Centric Priors [9.626027459292926]
2D vision-language models such as CLIP have been widely popularized, due to their impressive capabilities for open-vocabulary grounding in 2D images.
Recent works aim to elevate 2D CLIP features to 3D via feature distillation, but either learn neural fields that are scene-specific or focus on indoor room scan data.
We show that our method reconstructs 3D CLIP features with improved grounding capacity and spatial consistency.
arXiv Detail & Related papers (2024-06-26T20:16:49Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
We propose a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment.
Our 3D-VLA exploits the superior ability of current large-scale vision-language models on aligning the semantics between texts and 2D images.
During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images.
arXiv Detail & Related papers (2023-12-15T09:08:14Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
In this work, we explore a central 3D scene modeling task, namely, semantic scene reconstruction without using any 3D annotations.
The key idea of our approach is to design a trainable model that employs both incomplete 3D reconstructions and their corresponding source RGB-D images.
Our method achieves the state-of-the-art performance of semantic scene completion on two large-scale benchmark datasets MatterPort3D and ScanNet.
arXiv Detail & Related papers (2023-02-07T17:47:52Z) - Multiview Compressive Coding for 3D Reconstruction [77.95706553743626]
We introduce a simple framework that operates on 3D points of single objects or whole scenes.
Our model, Multiview Compressive Coding, learns to compress the input appearance and geometry to predict the 3D structure.
arXiv Detail & Related papers (2023-01-19T18:59:52Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z) - Learning to Reconstruct and Segment 3D Objects [4.709764624933227]
We aim to understand scenes and the objects within them by learning general and robust representations using deep neural networks.
This thesis makes three core contributions from object-level 3D shape estimation from single or multiple views to scene-level semantic understanding.
arXiv Detail & Related papers (2020-10-19T15:09:04Z) - GRF: Learning a General Radiance Field for 3D Representation and
Rendering [4.709764624933227]
We present a simple yet powerful neural network that implicitly represents and renders 3D objects and scenes only from 2D observations.
The network models 3D geometries as a general radiance field, which takes a set of 2D images with camera poses and intrinsics as input.
Our method can generate high-quality and realistic novel views for novel objects, unseen categories and challenging real-world scenes.
arXiv Detail & Related papers (2020-10-09T14:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.