論文の概要: Separate the Wheat from the Chaff: Model Deficiency Unlearning via
Parameter-Efficient Module Operation
- arxiv url: http://arxiv.org/abs/2308.08090v2
- Date: Thu, 18 Jan 2024 07:23:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 20:23:02.784114
- Title: Separate the Wheat from the Chaff: Model Deficiency Unlearning via
Parameter-Efficient Module Operation
- Title(参考訳): シャフから小麦を分離する:パラメータ効率の良いモジュール操作によるモデル欠陥学習
- Authors: Xinshuo Hu, Dongfang Li, Baotian Hu, Zihao Zheng, Zhenyu Liu, Min
Zhang
- Abstract要約: 大規模言語モデル(LLM)は様々な用途で広く用いられてきたが、非現実性や毒性に関わる問題に悩まされていることが知られている。
本研究では, LLMの真正性と解毒性を高めるため, 抽出-前-減算法(Ext-Sub)を提案する。
- 参考スコア(独自算出の注目度): 25.6335380561493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have been widely used in various applications
but are known to suffer from issues related to untruthfulness and toxicity.
While parameter-efficient modules (PEMs) have demonstrated their effectiveness
in equipping models with new skills, leveraging PEMs for deficiency unlearning
remains underexplored. In this work, we propose a PEMs operation approach,
namely Extraction-before-Subtraction (Ext-Sub), to enhance the truthfulness and
detoxification of LLMs through the integration of ``expert'' PEM and
``anti-expert'' PEM. Remarkably, even anti-expert PEM possess valuable
capabilities due to their proficiency in generating fabricated content, which
necessitates language modeling and logical narrative competence. Rather than
merely negating the parameters, our approach involves extracting and
eliminating solely the deficiency capability within anti-expert PEM while
preserving the general capabilities. To evaluate the effectiveness of our
approach in terms of truthfulness and detoxification, we conduct extensive
experiments on LLMs, encompassing additional abilities such as language
modeling and mathematical reasoning. Our empirical results demonstrate that our
approach effectively improves truthfulness and detoxification, while largely
preserving the fundamental abilities of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々な用途で広く用いられてきたが、非現実性や毒性に関わる問題に悩まされていることが知られている。
パラメータ効率のよいモジュール(pem)は、モデルに新しいスキルを付与する効果を実証しているが、未学習の欠如に対するpemの活用は未検討のままである。
本研究では,<expert'のPEMと<anti-expert'のPEMを統合して,LLMの真正性と解毒性を高めるために,抽出-before-Subtraction(Ext-Sub)というPEM操作手法を提案する。
注目すべきは、アンチエキスパートのPEMでさえ、言語モデリングと論理的物語能力を必要とする製造されたコンテンツを生成する能力のために、価値ある能力を持っていることである。
提案手法では,パラメータを単に否定するのではなく,汎用性を保ちながら,アンチエキスパートPEM内の機能不足だけを抽出,排除する。
本手法の有効性を評価するために,言語モデリングや数学的推論などの付加的能力を包含して,llmに関する広範囲な実験を行った。
実験結果から,本手法はLLMの基本能力を維持しつつ,真理性と解毒性を効果的に向上することを示す。
関連論文リスト
- Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Enhancing Q-Learning with Large Language Model Heuristics [0.0]
大規模言語モデル(LLM)は、単純なタスクでゼロショット学習を達成できるが、推論速度の低下と時折幻覚に悩まされる。
我々は,LLMを幻覚として活用し,強化学習のためのQ関数の学習を支援するフレームワークであるtextbfLLM-guided Q-learningを提案する。
論文 参考訳(メタデータ) (2024-05-06T10:42:28Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
本稿では,事前学習したMoEモデルのメモリフットプリントと計算要求の両方を削減するためのフレームワークSEER-MoEを紹介する。
第1段階では、ヘビーヒッターズカウントガイダンスを使用して専門家の総数を計算し、第2段階では、正則化に基づく微調整戦略を使用して精度の低下を回復する。
実験により,提案手法の有効性を実証し,精度のトレードオフを最小限に抑えた推論効率に最適化したMoEsモデルを試作した。
論文 参考訳(メタデータ) (2024-04-07T22:13:43Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理のための強力なパラダイムとして登場した。
LLMには、感情認識において強いが矛盾する先行性があり、その予測に影響を及ぼすことが示される。
以上の結果から,ICLをより大きなLCMで事前学習領域外の情動中心タスクに使用する場合,注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-25T19:07:32Z) - Detoxifying Large Language Models via Knowledge Editing [57.0669577257301]
本稿では,Large Language Models (LLM) のデトックス化のための知識編集手法について検討する。
我々は、強力な攻撃プロンプトを持つ9つの安全でないカテゴリをカバーするベンチマーク、SafeEditを構築した。
いくつかの知識編集手法を用いて実験を行い、知識編集がLLMを解毒する可能性を示し、汎用性能に限られた影響を与えていることを示す。
論文 参考訳(メタデータ) (2024-03-21T15:18:30Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
LLM(Large Language Models)のデプロイメントと適用は、そのメモリ非効率性、計算要求、API推論の高コストによって妨げられている。
LLMの能力をより小さなモデルに伝達する伝統的な蒸留法は、知識が十分に伝達されているかどうかを判断できないことが多い。
本稿では,アノテーションコストとモデル性能のバランスを最適化するために,アクティブラーニング戦略を用いた説明誘導型ELAD(Explaination-Guided LLMs Active Distillation)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-20T15:47:59Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
セグメンテッドな物語から一貫した知識表現を定式化する上で,LLMの習熟度を評価するための新しい質問答えベンチマークであるEpiK-Evalを紹介する。
これらの欠点は、一般的な訓練目的の本質的な性質に起因していると論じる。
本研究の成果は,より堅牢で信頼性の高いLCMを開発する上での洞察を与えるものである。
論文 参考訳(メタデータ) (2023-10-23T21:15:54Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
実験学習エージェント(ExpeL)を導入し、パラメトリック更新を必要とせずにエージェント体験から学習できるようにする。
我々のエージェントは、経験を自律的に収集し、学習課題の集合から自然言語を用いて知識を抽出する。
推論において、エージェントは抽出された洞察と過去の経験をリコールし、情報的決定を行う。
論文 参考訳(メタデータ) (2023-08-20T03:03:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。