Modelling the Spread of COVID-19 in Indoor Spaces using Automated
Probabilistic Planning
- URL: http://arxiv.org/abs/2308.08190v1
- Date: Wed, 16 Aug 2023 07:41:53 GMT
- Title: Modelling the Spread of COVID-19 in Indoor Spaces using Automated
Probabilistic Planning
- Authors: Mohamed Harmanani
- Abstract summary: coronavirus disease 2019 (COVID-19) pandemic has been ongoing for around 3 years.
Several strategies for controlling the spread of the disease have been debated by healthcare professionals.
To anticipate the potential impact of the disease, and to simulate the effectiveness of different mitigation strategies, a robust model of disease spread is needed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for around
3 years, and has infected over 750 million people and caused over 6 million
deaths worldwide at the time of writing. Throughout the pandemic, several
strategies for controlling the spread of the disease have been debated by
healthcare professionals, government authorities, and international bodies. To
anticipate the potential impact of the disease, and to simulate the
effectiveness of different mitigation strategies, a robust model of disease
spread is needed. In this work, we explore a novel approach based on
probabilistic planning and dynamic graph analysis to model the spread of
COVID-19 in indoor spaces. We endow the planner with means to control the
spread of the disease through non-pharmaceutical interventions (NPIs) such as
mandating masks and vaccines, and we compare the impact of crowds and capacity
limits on the spread of COVID-19 in these settings. We demonstrate that the use
of probabilistic planning is effective in predicting the amount of infections
that are likely to occur in shared spaces, and that automated planners have the
potential to design competent interventions to limit the spread of the disease.
Our code is fully open-source and is available at:
https://github.com/mharmanani/prob-planning-covid19 .
Related papers
- First 100 days of pandemic; an interplay of pharmaceutical, behavioral
and digital interventions -- A study using agent based modeling [14.192977334409104]
We simulate realistic pharmaceutical, behavioral, and digital interventions that mirror challenges in real-world policy adoption.
Our analysis reveals the pivotal role of the initial 100 days in dictating a pandemic's course.
arXiv Detail & Related papers (2024-01-09T19:38:59Z) - Machine learning spatio-temporal epidemiological model to evaluate
Germany-county-level COVID-19 risk [26.228330223358952]
We develop a framework with machine assisted to extract epidemic dynamics from infection data.
New toolbox is first utilized to the projection of the multi-level CO-19 prevalence over 412 Landkreis (counties) in Germany.
As a practical, we predict the situation at Christmas where the worst fatalities are 34.5 thousand, effective policies could contain it to below 21 thousand.
arXiv Detail & Related papers (2020-11-30T20:17:19Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution
using Reinforcement Learning [6.167847933188907]
VacSIM is a novel pipeline that dovetails Deep Reinforcement Learning models into a Contextual Bandits approach for optimizing the distribution of COVID-19 vaccine.
We evaluate this framework against a naive allocation approach of distributing vaccine proportional to the incidence of COVID-19 cases in five different States across India.
arXiv Detail & Related papers (2020-09-14T17:37:13Z) - A Data-driven Understanding of COVID-19 Dynamics Using Sequential
Genetic Algorithm Based Probabilistic Cellular Automata [4.36572039512405]
This study proposes that for an accurate data-driven modeling of this infection spread, cellular automata provides an excellent platform.
Elaborate analyses for COVID-19 statistics of forty countries from different continents have been performed.
The substantial predictive power of this model has been established with conclusions on the key players in this pandemic dynamics.
arXiv Detail & Related papers (2020-08-27T09:53:21Z) - From predictions to prescriptions: A data-driven response to COVID-19 [42.57407485467993]
We propose a comprehensive data-driven approach to understand the clinical characteristics of COVID-19.
We build personalized calculators to predict the risk of infection and mortality.
We propose an optimization model to re-allocate ventilators and alleviate shortages.
arXiv Detail & Related papers (2020-06-30T03:34:00Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - A Deep Q-learning/genetic Algorithms Based Novel Methodology For
Optimizing Covid-19 Pandemic Government Actions [63.669642197519934]
We use the SEIR epidemiological model to represent the evolution of the virus COVID-19 over time in the population.
The sequences of actions (confinement, self-isolation, two-meter distance or not taking restrictions) are evaluated according to a reward system.
We prove that our methodology is a valid tool to discover actions governments can take to reduce the negative effects of a pandemic in both senses.
arXiv Detail & Related papers (2020-05-15T17:17:45Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.