Neural Spherical Harmonics for structurally coherent continuous
representation of diffusion MRI signal
- URL: http://arxiv.org/abs/2308.08210v2
- Date: Wed, 23 Aug 2023 09:15:20 GMT
- Title: Neural Spherical Harmonics for structurally coherent continuous
representation of diffusion MRI signal
- Authors: Tom Hendriks, Anna Vilanova, Maxime Chamberland
- Abstract summary: We present a novel way to model diffusion magnetic resonance imaging (dMRI) datasets, that benefits from the structural coherence of the human brain.
Current methods model the dMRI signal in individual voxels, disregarding the intervoxel coherence that is present.
We use a neural network to parameterize a spherical harmonics series to represent the dMRI signal of a single subject from the Human Connectome Project dataset.
- Score: 0.3277163122167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel way to model diffusion magnetic resonance imaging (dMRI)
datasets, that benefits from the structural coherence of the human brain while
only using data from a single subject. Current methods model the dMRI signal in
individual voxels, disregarding the intervoxel coherence that is present. We
use a neural network to parameterize a spherical harmonics series (NeSH) to
represent the dMRI signal of a single subject from the Human Connectome Project
dataset, continuous in both the angular and spatial domain. The reconstructed
dMRI signal using this method shows a more structurally coherent representation
of the data. Noise in gradient images is removed and the fiber orientation
distribution functions show a smooth change in direction along a fiber tract.
We showcase how the reconstruction can be used to calculate mean diffusivity,
fractional anisotropy, and total apparent fiber density. These results can be
achieved with a single model architecture, tuning only one hyperparameter. In
this paper we also demonstrate how upsampling in both the angular and spatial
domain yields reconstructions that are on par or better than existing methods.
Related papers
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI compressing poses unique challenges due to its intricate temporal dynamics, low signal-to-noise ratio, and complicated underlying redundancies.
This paper reports a novel compression paradigm specifically tailored for fMRI data based on Implicit Neural Representation (INR)
arXiv Detail & Related papers (2023-11-30T05:54:37Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
implicit neural representation (INR) has emerged as a new deep learning paradigm for learning the internal continuity of an object.
The proposed method outperforms existing methods by suppressing the aliasing artifacts and noise.
The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
arXiv Detail & Related papers (2022-10-19T10:16:03Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECT is a unified deep unfolding (DU) framework for Quantitative MRI (qMRI)
It consists of a model-based end-to-end neural network, a method for motion-artifact reduction, and a self-supervised learning scheme.
Our results on experimentally collected multi-Gradient-Recalled Echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings.
arXiv Detail & Related papers (2022-10-12T15:49:51Z) - Multi-head Cascaded Swin Transformers with Attention to k-space Sampling
Pattern for Accelerated MRI Reconstruction [16.44971774468092]
We propose a physics-based stand-alone (convolution free) transformer model titled, the Multi-head Cascaded Swin Transformers (McSTRA) for accelerated MRI reconstruction.
Our model significantly outperforms state-of-the-art MRI reconstruction methods both visually and quantitatively.
arXiv Detail & Related papers (2022-07-18T07:21:56Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Learning Signal-Agnostic Manifolds of Neural Fields [50.066449953522685]
We leverage neural fields to capture the underlying structure in image, shape, audio and cross-modal audiovisual domains.
We show that by walking across the underlying manifold of GEM, we may generate new samples in our signal domains.
arXiv Detail & Related papers (2021-11-11T18:57:40Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.