論文の概要: Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network
- arxiv url: http://arxiv.org/abs/2308.08220v1
- Date: Wed, 16 Aug 2023 08:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 14:13:29.256240
- Title: Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network
- Title(参考訳): 照明認識ガンマ補正と完全画像モデリングネットワークを用いた低光度画像強調
- Authors: Yinglong Wang, Zhen Liu, Jianzhuang Liu, Songcen Xu, Shuaicheng Liu
- Abstract要約: 低照度環境は通常、情報の少ない大規模な暗黒地帯に繋がる。
本稿では,ガンマ補正の有効性を深層ネットワークのモデリング能力と統合することを提案する。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似することを提案する。
- 参考スコア(独自算出の注目度): 69.96295927854042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel network structure with illumination-aware gamma
correction and complete image modelling to solve the low-light image
enhancement problem. Low-light environments usually lead to less informative
large-scale dark areas, directly learning deep representations from low-light
images is insensitive to recovering normal illumination. We propose to
integrate the effectiveness of gamma correction with the strong modelling
capacities of deep networks, which enables the correction factor gamma to be
learned in a coarse to elaborate manner via adaptively perceiving the deviated
illumination. Because exponential operation introduces high computational
complexity, we propose to use Taylor Series to approximate gamma correction,
accelerating the training and inference speed. Dark areas usually occupy large
scales in low-light images, common local modelling structures, e.g., CNN,
SwinIR, are thus insufficient to recover accurate illumination across whole
low-light images. We propose a novel Transformer block to completely simulate
the dependencies of all pixels across images via a local-to-global hierarchical
attention mechanism, so that dark areas could be inferred by borrowing the
information from far informative regions in a highly effective manner.
Extensive experiments on several benchmark datasets demonstrate that our
approach outperforms state-of-the-art methods.
- Abstract(参考訳): 本稿では、低照度画像強調問題を解決するために、照明対応ガンマ補正と完全な画像モデリングを備えた新しいネットワーク構造を提案する。
低光環境は、通常、情報量が少なく、低光度画像からの深い表現を直接学習することは、通常の照明の回復には影響しない。
そこで本研究では,ガンマ補正の有効性を深層ネットワークの強力なモデリング能力と一体化することにより,偏光を適応的に知覚することで補正係数ガンマを粗大かつ精巧に学習できることを示す。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似し、トレーニングと推論速度を高速化する。
暗い領域は通常、低照度画像において大きな規模を占めるが、cnn、swiinirのような局所的なモデリング構造は、低照度画像全体にわたって正確な照明を復元するには不十分である。
本研究では,画像間の全画素の依存関係を局所的・グローバル的階層的アテンション機構によって完全にシミュレートするトランスフォーマーブロックを提案する。
いくつかのベンチマークデータセットにおける広範囲な実験は、我々のアプローチが最先端のメソッドよりも優れていることを示している。
関連論文リスト
- ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [6.191556429706728]
不適切な照明は、情報損失や画質の低下を招き、監視などの様々な応用に影響を及ぼす可能性がある。
現在のエンハンスメント技術は、しばしば特定のデータセットを使用して低照度画像を強化するが、様々な現実世界の条件に適応する際の課題は残る。
アダプティブ・ライト・エンハンスメント・ネットワーク (ALEN) を導入し、その主なアプローチは、ローカル照明とグローバル照明の強化が必要であるかどうかを決定するための分類機構を使用することである。
論文 参考訳(メタデータ) (2024-07-29T05:19:23Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
低照度画像強調は、薄暗い環境で収集された画像の知覚を改善することを目的としている。
既存の方法では、識別された輝度情報を適応的に抽出することができず、露光過多や露光過多を容易に引き起こすことができる。
MSATrというマルチスケールアテンション変換器を提案し,光バランスの局所的・グローバル的特徴を十分に抽出し,視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-12-27T10:07:11Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - CDAN: Convolutional dense attention-guided network for low-light image enhancement [2.2530496464901106]
低照度画像は、明度が低下し、色が変色し、細部が小さくなるという課題を生んでいる。
本稿では,低照度画像を改善するための新しいソリューションであるCDAN(Convolutional Dense Attention-guided Network)を紹介する。
CDANは自動エンコーダベースのアーキテクチャと、アテンション機構とスキップ接続によって補完される、畳み込みブロックと密集ブロックを統合している。
論文 参考訳(メタデータ) (2023-08-24T16:22:05Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
CIGAN(Cycle-Interactive Generative Adversarial Network)は、低照度画像間の照明分布の転送を改善できるだけでなく、詳細な信号も操作できる。
特に、提案した低照度誘導変換は、低照度GAN生成器から劣化GAN生成器へ、低照度画像の特徴をフォワードする。
論文 参考訳(メタデータ) (2022-07-03T06:37:46Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
そこで本研究では,現実の汚職とミスアライメントされたトレーニング画像からなる,新しい低照度画像強調データセットを提案する。
本モデルでは,新たに提案したデータセットと,他の一般的な低照度データセットの両方に対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-01-10T03:12:52Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。