論文の概要: How To Overcome Confirmation Bias in Semi-Supervised Image
Classification By Active Learning
- arxiv url: http://arxiv.org/abs/2308.08224v1
- Date: Wed, 16 Aug 2023 08:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 14:14:10.080833
- Title: How To Overcome Confirmation Bias in Semi-Supervised Image
Classification By Active Learning
- Title(参考訳): 能動学習による半監督画像分類における確認バイアスの克服方法
- Authors: Sandra Gilhuber, Rasmus Hvingelby, Mang Ling Ada Fok, Thomas Seidl
- Abstract要約: 実世界のアプリケーションでは、クラス間不均衡、クラス内不均衡、クラス間の類似性という3つの課題を提示する。
ランダムサンプリングは、確認バイアスを軽減せず、場合によっては教師付き学習よりもパフォーマンスが悪くなる。
この結果から,実世界の共通の課題の存在下での,アクティブとセミ教師付き学習の組み合わせの可能性についての知見が得られた。
- 参考スコア(独自算出の注目度): 2.1805442504863506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Do we need active learning? The rise of strong deep semi-supervised methods
raises doubt about the usability of active learning in limited labeled data
settings. This is caused by results showing that combining semi-supervised
learning (SSL) methods with a random selection for labeling can outperform
existing active learning (AL) techniques. However, these results are obtained
from experiments on well-established benchmark datasets that can overestimate
the external validity. However, the literature lacks sufficient research on the
performance of active semi-supervised learning methods in realistic data
scenarios, leaving a notable gap in our understanding. Therefore we present
three data challenges common in real-world applications: between-class
imbalance, within-class imbalance, and between-class similarity. These
challenges can hurt SSL performance due to confirmation bias. We conduct
experiments with SSL and AL on simulated data challenges and find that random
sampling does not mitigate confirmation bias and, in some cases, leads to worse
performance than supervised learning. In contrast, we demonstrate that AL can
overcome confirmation bias in SSL in these realistic settings. Our results
provide insights into the potential of combining active and semi-supervised
learning in the presence of common real-world challenges, which is a promising
direction for robust methods when learning with limited labeled data in
real-world applications.
- Abstract(参考訳): 積極的な学習が必要ですか?
強力な深層半教師付き手法の台頭は、ラベル付きデータ設定でアクティブラーニングのユーザビリティに疑問を呈する。
これは、半教師付き学習(SSL)手法とラベリングのためのランダム選択を組み合わせることで、既存のアクティブラーニング(AL)技術より優れていることを示す結果から生じる。
しかし、これらの結果は、外部の有効性を過大評価できる、確立されたベンチマークデータセットの実験から得られる。
しかし,本論文では,実データシナリオにおけるアクティブ半教師あり学習手法の性能に関する十分な研究が不足しており,その理解には大きなギャップが残されている。
したがって,実世界のアプリケーションでは,クラス間不均衡,クラス内不均衡,クラス間の類似性という3つの課題が存在する。
これらの課題は、確認バイアスによってSSLのパフォーマンスを損なう可能性がある。
シミュレーションデータ課題についてsslとalを用いて実験を行い、ランダムサンプリングが確認バイアスを軽減せず、場合によっては教師あり学習よりもパフォーマンスが悪くなることを発見した。
対照的に、これらの現実的な環境では、ALがSSLの確認バイアスを克服できることを示す。
本研究は,実世界のアプリケーションで限定されたラベル付きデータを用いた学習において,堅牢な手法が有望な方向性である実世界の課題の存在下で,アクティブな学習と半教師付き学習を組み合わせる可能性に関する洞察を提供する。
関連論文リスト
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
クラス非依存動作予測のための半教師あり学習の可能性について検討する。
我々のフレームワークは一貫性に基づく自己学習パラダイムを採用しており、ラベルのないデータからモデルを学習することができる。
本手法は,弱さと完全教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2023-12-13T09:32:50Z) - Active Semi-Supervised Learning by Exploring Per-Sample Uncertainty and
Consistency [30.94964727745347]
そこで我々は,ASSL(Active Semi-supervised Learning)と呼ばれる手法を提案し,低コストでモデルの精度を向上させる。
ASSLには、ラベルなしデータの使用により、アクティブラーニング(AL)よりもダイナミックなモデル更新が含まれている。
ASSLは同じ性能を保ちながら、半教師あり学習(SSL)の約5.3倍の計算効率を達成した。
論文 参考訳(メタデータ) (2023-03-15T22:58:23Z) - Fair Robust Active Learning by Joint Inconsistency [22.150782414035422]
本稿では,従来のFALと対角的堅牢性を統合したFAL(Fair Robust Active Learning)を提案する。
関節不整合(JIN)による簡易かつ効果的なFRAL戦略の開発
本手法は, 良性サンプルと逆性サンプルと, 標準モデルとロバストモデルとの整合性の予測を利用する。
論文 参考訳(メタデータ) (2022-09-22T01:56:41Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
アクティブラーニング(AL)と半教師付きラーニング(SSL)は2つの効果があるが、しばしば孤立している。
本稿では、SSL-ALの潜在的な優位性をさらに調査するために、革新的な一貫性に基づく仮想aDvErialアルゴリズムを提案する。
2つの実世界のケーススタディは、提案したデータサンプリングアルゴリズムの適用と展開の実践的な産業価値を可視化する。
論文 参考訳(メタデータ) (2022-06-07T13:28:43Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Adversarial Self-Supervised Learning for Semi-Supervised 3D Action
Recognition [123.62183172631443]
本稿では,SSLと半教師付きスキームを緊密に結合する新しいフレームワークであるAdversarial Self-Supervised Learning (ASSL)を紹介する。
具体的には,3次元動作認識のための学習表現の識別能力を向上させる効果的なSSL方式を設計する。
論文 参考訳(メタデータ) (2020-07-12T08:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。