Diff-CAPTCHA: An Image-based CAPTCHA with Security Enhanced by Denoising
Diffusion Model
- URL: http://arxiv.org/abs/2308.08367v1
- Date: Wed, 16 Aug 2023 13:41:29 GMT
- Title: Diff-CAPTCHA: An Image-based CAPTCHA with Security Enhanced by Denoising
Diffusion Model
- Authors: Ran Jiang, Sanfeng Zhang, Linfeng Liu, Yanbing Peng
- Abstract summary: Diff-CAPTCHA is an image-click CAPTCHA scheme based on diffusion models.
This paper develops several attack methods, including end-to-end attacks based on Faster R-CNN and two-stage attacks.
Results show that diffusion models can effectively enhance CAPTCHA security while maintaining good usability in human testing.
- Score: 2.1551899143698328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enhance the security of text CAPTCHAs, various methods have been employed,
such as adding the interference lines on the text, randomly distorting the
characters, and overlapping multiple characters. These methods partly increase
the difficulty of automated segmentation and recognition attacks. However,
facing the rapid development of the end-to-end breaking algorithms, their
security has been greatly weakened. The diffusion model is a novel image
generation model that can generate the text images with deep fusion of
characters and background images. In this paper, an image-click CAPTCHA scheme
called Diff-CAPTCHA is proposed based on denoising diffusion models. The
background image and characters of the CAPTCHA are treated as a whole to guide
the generation process of a diffusion model, thus weakening the character
features available for machine learning, enhancing the diversity of character
features in the CAPTCHA, and increasing the difficulty of breaking algorithms.
To evaluate the security of Diff-CAPTCHA, this paper develops several attack
methods, including end-to-end attacks based on Faster R-CNN and two-stage
attacks, and Diff-CAPTCHA is compared with three baseline schemes, including
commercial CAPTCHA scheme and security-enhanced CAPTCHA scheme based on style
transfer. The experimental results show that diffusion models can effectively
enhance CAPTCHA security while maintaining good usability in human testing.
Related papers
- MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - A Survey of Adversarial CAPTCHAs on its History, Classification and
Generation [69.36242543069123]
We extend the definition of adversarial CAPTCHAs and propose a classification method for adversarial CAPTCHAs.
Also, we analyze some defense methods that can be used to defend adversarial CAPTCHAs, indicating potential threats to adversarial CAPTCHAs.
arXiv Detail & Related papers (2023-11-22T08:44:58Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
Adversarial Prompt Tuning (AdvPT) is a technique to enhance the adversarial robustness of image encoders in Vision-Language Models (VLMs)
We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques.
arXiv Detail & Related papers (2023-11-19T07:47:43Z) - MaskDiffusion: Boosting Text-to-Image Consistency with Conditional Mask [84.84034179136458]
A crucial factor leading to the text-image mismatch issue is the inadequate cross-modality relation learning.
We propose an adaptive mask, which is conditioned on the attention maps and the prompt embeddings, to dynamically adjust the contribution of each text token to the image features.
Our method, termed MaskDiffusion, is training-free and hot-pluggable for popular pre-trained diffusion models.
arXiv Detail & Related papers (2023-09-08T15:53:37Z) - EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees [1.9649272351760065]
We propose Enr, a family of solvers that use deep ensemble uncertainty to detect and skip out-of-distribution CAPTCHAs.
We prove novel theoretical bounds on the effectiveness of our solvers and demonstrate their use with state-of-the-art CAPTCHA solvers.
arXiv Detail & Related papers (2023-07-27T20:19:11Z) - Vulnerability analysis of captcha using Deep learning [0.0]
This research investigates the flaws and vulnerabilities in the CAPTCHA generating systems.
To achieve this, we created CapNet, a Convolutional Neural Network.
The proposed platform can evaluate both numerical and alphanumerical CAPTCHAs
arXiv Detail & Related papers (2023-02-18T17:45:11Z) - Semantic-Conditional Diffusion Networks for Image Captioning [116.86677915812508]
We propose a new diffusion model based paradigm tailored for image captioning, namely Semantic-Conditional Diffusion Networks (SCD-Net)
In SCD-Net, multiple Diffusion Transformer structures are stacked to progressively strengthen the output sentence with better visional-language alignment and linguistical coherence.
Experiments on COCO dataset demonstrate the promising potential of using diffusion models in the challenging image captioning task.
arXiv Detail & Related papers (2022-12-06T16:08:16Z) - Robust Text CAPTCHAs Using Adversarial Examples [129.29523847765952]
We propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC)
At the first stage, the foregrounds and backgrounds are constructed with randomly sampled font and background images.
At the second stage, we apply a highly transferable adversarial attack for text CAPTCHAs to better obstruct CAPTCHA solvers.
arXiv Detail & Related papers (2021-01-07T11:03:07Z) - An End-to-End Attack on Text-based CAPTCHAs Based on Cycle-Consistent
Generative Adversarial Network [4.955311532191887]
We propose an efficient and simple end-to-end attack method based on cycle-consistent generative adversarial networks.
It can attack common text-based CAPTCHA schemes only by modifying a few configuration parameters.
Our approach efficiently cracked the CAPTCHA schemes deployed by 10 popular websites.
arXiv Detail & Related papers (2020-08-26T14:57:47Z) - Deep-CAPTCHA: a deep learning based CAPTCHA solver for vulnerability
assessment [1.027974860479791]
This research investigates the weaknesses and vulnerabilities of the CAPTCHA generator systems.
We develop a Convolutional Neural Network called Deep-CAPTCHA to achieve this goal.
Our network's cracking accuracy leads to a high rate of 98.94% and 98.31% for the numerical and the alpha-numerical test datasets.
arXiv Detail & Related papers (2020-06-15T11:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.