EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees
- URL: http://arxiv.org/abs/2307.15180v2
- Date: Fri, 28 Jun 2024 16:40:39 GMT
- Title: EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees
- Authors: Duc C. Hoang, Behzad Ousat, Amin Kharraz, Cuong V. Nguyen,
- Abstract summary: We propose Enr, a family of solvers that use deep ensemble uncertainty to detect and skip out-of-distribution CAPTCHAs.
We prove novel theoretical bounds on the effectiveness of our solvers and demonstrate their use with state-of-the-art CAPTCHA solvers.
- Score: 1.9649272351760065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The popularity of text-based CAPTCHA as a security mechanism to protect websites from automated bots has prompted researches in CAPTCHA solvers, with the aim of understanding its failure cases and subsequently making CAPTCHAs more secure. Recently proposed solvers, built on advances in deep learning, are able to crack even the very challenging CAPTCHAs with high accuracy. However, these solvers often perform poorly on out-of-distribution samples that contain visual features different from those in the training set. Furthermore, they lack the ability to detect and avoid such samples, making them susceptible to being locked out by defense systems after a certain number of failed attempts. In this paper, we propose EnSolver, a family of CAPTCHA solvers that use deep ensemble uncertainty to detect and skip out-of-distribution CAPTCHAs, making it harder to be detected. We prove novel theoretical bounds on the effectiveness of our solvers and demonstrate their use with state-of-the-art CAPTCHA solvers. Our experiments show that the proposed approaches perform well when cracking CAPTCHA datasets that contain both in-distribution and out-of-distribution samples.
Related papers
- The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - A Survey of Adversarial CAPTCHAs on its History, Classification and
Generation [69.36242543069123]
We extend the definition of adversarial CAPTCHAs and propose a classification method for adversarial CAPTCHAs.
Also, we analyze some defense methods that can be used to defend adversarial CAPTCHAs, indicating potential threats to adversarial CAPTCHAs.
arXiv Detail & Related papers (2023-11-22T08:44:58Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Vulnerability analysis of captcha using Deep learning [0.0]
This research investigates the flaws and vulnerabilities in the CAPTCHA generating systems.
To achieve this, we created CapNet, a Convolutional Neural Network.
The proposed platform can evaluate both numerical and alphanumerical CAPTCHAs
arXiv Detail & Related papers (2023-02-18T17:45:11Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Robust Text CAPTCHAs Using Adversarial Examples [129.29523847765952]
We propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC)
At the first stage, the foregrounds and backgrounds are constructed with randomly sampled font and background images.
At the second stage, we apply a highly transferable adversarial attack for text CAPTCHAs to better obstruct CAPTCHA solvers.
arXiv Detail & Related papers (2021-01-07T11:03:07Z) - An End-to-End Attack on Text-based CAPTCHAs Based on Cycle-Consistent
Generative Adversarial Network [4.955311532191887]
We propose an efficient and simple end-to-end attack method based on cycle-consistent generative adversarial networks.
It can attack common text-based CAPTCHA schemes only by modifying a few configuration parameters.
Our approach efficiently cracked the CAPTCHA schemes deployed by 10 popular websites.
arXiv Detail & Related papers (2020-08-26T14:57:47Z) - Deep-CAPTCHA: a deep learning based CAPTCHA solver for vulnerability
assessment [1.027974860479791]
This research investigates the weaknesses and vulnerabilities of the CAPTCHA generator systems.
We develop a Convolutional Neural Network called Deep-CAPTCHA to achieve this goal.
Our network's cracking accuracy leads to a high rate of 98.94% and 98.31% for the numerical and the alpha-numerical test datasets.
arXiv Detail & Related papers (2020-06-15T11:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.