Automated Semiconductor Defect Inspection in Scanning Electron
Microscope Images: a Systematic Review
- URL: http://arxiv.org/abs/2308.08376v2
- Date: Fri, 18 Aug 2023 11:03:04 GMT
- Title: Automated Semiconductor Defect Inspection in Scanning Electron
Microscope Images: a Systematic Review
- Authors: Thibault Lechien, Enrique Dehaerne, Bappaditya Dey, Victor Blanco,
Sandip Halder, Stefan De Gendt, Wannes Meert
- Abstract summary: Machine learning algorithms can be trained to accurately classify and locate defects in semiconductor samples.
Convolutional neural networks have proved to be particularly useful in this regard.
This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images.
- Score: 4.493547775253646
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A growing need exists for efficient and accurate methods for detecting
defects in semiconductor materials and devices. These defects can have a
detrimental impact on the efficiency of the manufacturing process, because they
cause critical failures and wafer-yield limitations. As nodes and patterns get
smaller, even high-resolution imaging techniques such as Scanning Electron
Microscopy (SEM) produce noisy images due to operating close to sensitivity
levels and due to varying physical properties of different underlayers or
resist materials. This inherent noise is one of the main challenges for defect
inspection. One promising approach is the use of machine learning algorithms,
which can be trained to accurately classify and locate defects in semiconductor
samples. Recently, convolutional neural networks have proved to be particularly
useful in this regard. This systematic review provides a comprehensive overview
of the state of automated semiconductor defect inspection on SEM images,
including the most recent innovations and developments. 38 publications were
selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of
these, the application, methodology, dataset, results, limitations and future
work were summarized. A comprehensive overview and analysis of their methods is
provided. Finally, promising avenues for future work in the field of SEM-based
defect inspection are suggested.
Related papers
- Scalable AI Framework for Defect Detection in Metal Additive Manufacturing [2.303463009749888]
We leverage convolutional neural networks (CNN) to analyze thermal images of printed layers, automatically identifying anomalies that impact these properties.
Our work integrates these models in the CLoud ADditive MAnufacturing (CLADMA) module to enhance their accessibility and practicality for AM applications.
arXiv Detail & Related papers (2024-11-01T18:17:59Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection [0.11184789007828977]
This work introduces a task-agnostic, meta-learning approach to semiconductor defect inspection.
It enables the incremental addition of new defect classes and scales to create a more robust and generalized model.
We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI.
arXiv Detail & Related papers (2024-07-17T16:41:22Z) - Addressing Class Imbalance and Data Limitations in Advanced Node Semiconductor Defect Inspection: A Generative Approach for SEM Images [0.10555513406636088]
We propose a method for generating synthetic semiconductor SEM images using a diffusion model within a limited data regime.
In contrast to images generated through conventional simulation methods, SEM images generated through our proposed DL method closely resemble real SEM images, replicating their noise characteristics and surface roughness adaptively.
arXiv Detail & Related papers (2024-07-14T22:25:05Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
We propose a transformer network with multi-stage CNN feature injection for surface defect segmentation.
CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder.
In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects.
arXiv Detail & Related papers (2023-09-22T06:12:02Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
This work is the first demonstration to accurately detect and precisely segment semiconductor defect patterns by using a diffusion model.
Our proposed approach outperforms previous work on overall mAP and performs comparatively better or as per for almost all defect classes.
arXiv Detail & Related papers (2023-07-17T17:53:36Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Learning-based Defect Recognition for Quasi-Periodic Microscope Images [0.0]
We propose a semi-supervised machine learning method that assists in the detection of lattice defects from atomic resolution microscope images.
It involves a convolutional neural network that classifies image patches as defective or non-defective, a graph-based that chooses one non-defective patch as a model, and finally an automatically generated convolutional filter bank.
The algorithm is tested on III-V/Si crystalline materials and successfully evaluated against different metrics, showing promising results even for extremely small training data sets.
arXiv Detail & Related papers (2020-07-02T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.