An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection
- URL: http://arxiv.org/abs/2407.12724v1
- Date: Wed, 17 Jul 2024 16:41:22 GMT
- Title: An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection
- Authors: Amit Prasad, Bappaditya Dey, Victor Blanco, Sandip Halder,
- Abstract summary: This work introduces a task-agnostic, meta-learning approach to semiconductor defect inspection.
It enables the incremental addition of new defect classes and scales to create a more robust and generalized model.
We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI.
- Score: 0.11184789007828977
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning-based semiconductor defect inspection has gained traction in recent years, offering a powerful and versatile approach that provides high accuracy, adaptability, and efficiency in detecting and classifying nano-scale defects. However, semiconductor manufacturing processes are continually evolving, leading to the emergence of new types of defects over time. This presents a significant challenge for conventional supervised defect detectors, as they may suffer from catastrophic forgetting when trained on new defect datasets, potentially compromising performance on previously learned tasks. An alternative approach involves the constant storage of previously trained datasets alongside pre-trained model versions, which can be utilized for (re-)training from scratch or fine-tuning whenever encountering a new defect dataset. However, adhering to such a storage template is impractical in terms of size, particularly when considering High-Volume Manufacturing (HVM). Additionally, semiconductor defect datasets, especially those encompassing stochastic defects, are often limited and expensive to obtain, thus lacking sufficient representation of the entire universal set of defectivity. This work introduces a task-agnostic, meta-learning approach aimed at addressing this challenge, which enables the incremental addition of new defect classes and scales to create a more robust and generalized model for semiconductor defect inspection. We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI, demonstrating its superior performance compared to conventional supervised training methods.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Continual learning for surface defect segmentation by subnetwork
creation and selection [55.2480439325792]
We introduce a new continual (or lifelong) learning algorithm that performs segmentation tasks without undergoing catastrophic forgetting.
The method is applied to two different surface defect segmentation problems that are learned incrementally.
Our approach shows comparable results with joint training when all the training data (all defects) are seen simultaneously.
arXiv Detail & Related papers (2023-12-08T15:28:50Z) - Improved Defect Detection and Classification Method for Advanced IC
Nodes by Using Slicing Aided Hyper Inference with Refinement Strategy [0.11184789007828977]
In recent years, progress has been made towards high-NA (Numerical Aperture) EUVL (Extreme-Ultraviolet-Lithography) paradigm.
However, a significant increase in defects and the complexity of defect detection becomes more pronounced with high-NA.
In this work, we investigate the use of the Slicing Aided Hyper Inference (SAHI) framework for improving upon current techniques.
arXiv Detail & Related papers (2023-11-19T22:24:19Z) - YOLOv8 for Defect Inspection of Hexagonal Directed Self-Assembly
Patterns: A Data-Centric Approach [6.142308190194335]
We propose a method for obtaining coherent and complete labels for a dataset of hexagonal contact hole DSA patterns.
We show that YOLOv8, a state-of-the-art neural network, achieves defect detection precisions of more than 0.9 mAP on our final dataset.
arXiv Detail & Related papers (2023-07-28T12:17:01Z) - A Novel Strategy for Improving Robustness in Computer Vision
Manufacturing Defect Detection [1.3198689566654107]
Visual quality inspection in high performance manufacturing can benefit from automation, due to cost savings and improved rigor.
Deep learning techniques are the current state of the art for generic computer vision tasks like classification and object detection.
Manufacturing data can pose a challenge for deep learning because data is highly repetitive and there are few images of defects or deviations to learn from.
arXiv Detail & Related papers (2023-05-16T12:51:51Z) - Quantile Online Learning for Semiconductor Failure Analysis [0.0]
This paper focuses on novel quantile online learning for semiconductor failure analysis.
The proposed method is applied to semiconductor device-level defects: FinFET bridge defect, GAA-FET bridge defect, GAA-FET dislocation defect, and a public database: SECOM.
Our proposed method achieved an overall accuracy of 86.66% and compared with the second-best existing method it improves 15.50% on the GAA-FET dislocation defect dataset.
arXiv Detail & Related papers (2023-03-13T12:34:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.