Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems
- URL: http://arxiv.org/abs/2308.08511v3
- Date: Wed, 20 Dec 2023 02:21:20 GMT
- Title: Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems
- Authors: Zirong Li, Yanyang Wang, Jianjia Zhang and Weiwen Wu, Hengyong Yu
- Abstract summary: We propose a novel two-and-a-half order score-based model (TOSM) for 3D volumetric reconstruction.
During the training phase, our TOSM learns data distributions in 2D space, which reduces the complexity of training.
In the reconstruction phase, the TOSM updates the data distribution in 3D space, utilizing complementary scores along three directions.
- Score: 7.074380879971194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are crucial
technologies in the field of medical imaging. Score-based models have proven to
be effective in addressing different inverse problems encountered in CT and
MRI, such as sparse-view CT and fast MRI reconstruction. However, these models
face challenges in achieving accurate three dimensional (3D) volumetric
reconstruction. The existing score-based models primarily focus on
reconstructing two dimensional (2D) data distribution, leading to
inconsistencies between adjacent slices in the reconstructed 3D volumetric
images. To overcome this limitation, we propose a novel two-and-a-half order
score-based model (TOSM). During the training phase, our TOSM learns data
distributions in 2D space, which reduces the complexity of training compared to
directly working on 3D volumes. However, in the reconstruction phase, the TOSM
updates the data distribution in 3D space, utilizing complementary scores along
three directions (sagittal, coronal, and transaxial) to achieve a more precise
reconstruction. The development of TOSM is built on robust theoretical
principles, ensuring its reliability and efficacy. Through extensive
experimentation on large-scale sparse-view CT and fast MRI datasets, our method
demonstrates remarkable advancements and attains state-of-the-art results in
solving 3D ill-posed inverse problems. Notably, the proposed TOSM effectively
addresses the inter-slice inconsistency issue, resulting in high-quality 3D
volumetric reconstruction.
Related papers
- Slice-Consistent 3D Volumetric Brain CT-to-MRI Translation with 2D Brownian Bridge Diffusion Model [3.4248731707266264]
In neuroimaging, generally, brain CT is more cost-effective and accessible than MRI.
Medical image-to-image translation (I2I) serves as a promising solution.
This study is the first to achieve high-quality 3D medical I2I based only on a 2D DM with no extra architectural models.
arXiv Detail & Related papers (2024-07-06T12:13:36Z) - Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction [9.848266253196307]
Cone-Beam Computed Tomography (CBCT) is an indispensable technique in medical imaging, yet the associated radiation exposure raises concerns in clinical practice.
We propose a novel reconstruction framework, namely DIF-Gaussian, which leverages 3D Gaussians to represent the feature distribution in the 3D space.
We evaluate DIF-Gaussian on two public datasets, showing significantly superior reconstruction performance than previous state-of-the-art methods.
arXiv Detail & Related papers (2024-07-01T08:48:04Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
Current commercial Digital Subtraction Angiography (DSA) systems typically demand hundreds of scanning views to perform reconstruction.
The dynamic blood flow and insufficient input of sparse-view DSA images present significant challenges to the 3D vessel reconstruction task.
We propose to use a time-agnostic vessel probability field to solve this problem effectively.
arXiv Detail & Related papers (2024-05-17T11:23:33Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation [3.8215162658168524]
Oral-3Dv2 is a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
Our model learns to represent the 3D oral structure in an implicit way by mapping 2D coordinates into density values of voxels in the 3D space.
To the best of our knowledge, this is the first work of a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
arXiv Detail & Related papers (2023-03-21T18:17:27Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
We propose a novel approach using two perpendicular pre-trained 2D diffusion models to solve the 3D inverse problem.
Our method is highly effective for 3D medical image reconstruction tasks, including MRI Z-axis super-resolution, compressed sensing MRI, and sparse-view CT.
arXiv Detail & Related papers (2023-03-15T08:28:06Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
Diffusion models have emerged as the new state-of-the-art generative model with high quality samples.
We propose to augment the 2D diffusion prior with a model-based prior in the remaining direction at test time, such that one can achieve coherent reconstructions across all dimensions.
Our method can be run in a single commodity GPU, and establishes the new state-of-the-art.
arXiv Detail & Related papers (2022-11-19T10:32:21Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
We propose a novel view-disentangled transformer to enhance the extraction of MRI features for more accurate tumour detection.
First, the proposed transformer harvests long-range correlation among different positions in a 3D brain scan.
Second, the transformer models a stack of slice features as multiple 2D views and enhance these features view-by-view.
Third, we deploy the proposed transformer module in a transformer backbone, which can effectively detect the 2D regions surrounding brain lesions.
arXiv Detail & Related papers (2022-09-20T11:58:23Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging [0.0]
We propose an enhanced 3D myocardial strain estimation procedure, which combines complementary displacement information from multiple orientations of a single imaging modality (untagged CMR SSFP images)
We register the sets of short-axis, four-chamber and two-chamber views via a 2D non-rigid registration algorithm implemented in a commercial software (Segment, Medviso)
We then create a series of interpolating functions for the three directions of motion and use them to deform a tetrahedral mesh representation of a patient-specific left ventricle.
arXiv Detail & Related papers (2020-09-25T22:47:50Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.