Confinement in 1+1D $\mathbb{Z}_2$ Lattice Gauge Theories at Finite Temperature
- URL: http://arxiv.org/abs/2308.08592v2
- Date: Wed, 24 Apr 2024 11:55:07 GMT
- Title: Confinement in 1+1D $\mathbb{Z}_2$ Lattice Gauge Theories at Finite Temperature
- Authors: Matjaž Kebrič, Jad C. Halimeh, Ulrich Schollwöck, Fabian Grusdt,
- Abstract summary: We study confinement in a simple one-dimensional $mathbbZ$ lattice gauge theory at finite temperature and filling.
Our results shed new light on confinement at finite temperature from an experimentally relevant standpoint.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confinement is a paradigmatic phenomenon of gauge theories, and its understanding lies at the forefront of high-energy physics. Here, we study confinement in a simple one-dimensional $\mathbb{Z}_2$ lattice gauge theory at finite temperature and filling, which is within the reach of current cold-atom and superconducting-qubit platforms. By employing matrix product states (MPS) calculations, we investigate the decay of the finite-temperature Green's function and uncover a smooth crossover between the confined and deconfined regimes. Furthermore, using the Friedel oscillations and string length distributions obtained from snapshots sampled from MPS, both of which are experimentally readily available, we verify that confined mesons remain well-defined at arbitrary finite temperature. This phenomenology is further supported by probing quench dynamics of mesons with exact diagonalization. Our results shed new light on confinement at finite temperature from an experimentally relevant standpoint.
Related papers
- Clustering of conditional mutual information and quantum Markov structure at arbitrary temperatures [0.0]
Recent investigations have unveiled exotic quantum phases that elude characterization by simple bipartite correlation functions.
In these phases, long-range entanglement arising from tripartite correlations plays a central role.
Our findings unveil that, even at low temperatures, a broad class of tripartite entanglement cannot manifest in the long-range regime.
arXiv Detail & Related papers (2024-07-08T11:30:12Z) - Finite-temperature Rydberg arrays: quantum phases and entanglement characterization [0.0]
We develop a network-based numerical toolbox for constructing the quantum many-body states at thermal equilibrium.
We numerically confirm that a conformal scaling law of entanglement extends from the zero-temperature critical points into the low-temperature regime.
arXiv Detail & Related papers (2024-05-28T18:00:03Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Finite temperature quantum condensations in the space of states: a new
perspective for quantum annealing [0.0]
We show that the condensation QPTs recently introduced at zero temperature can naturally be extended to finite temperature.
We illustrate this criterion in the paradigmatic Grover model and in a system of free fermions in a one-dimensional inhomogeneous lattice.
arXiv Detail & Related papers (2022-03-11T08:59:38Z) - Correlating exciton coherence length, localization, and its optical
lineshape. I. a finite temperature solution of the Davydov soliton model [6.321935605877715]
We present a novel approach for connecting the lineshape of a molecular exciton to finite-temperature lattice vibrations.
We find that both the energy fluctuations and the localization can be described in terms of a parameter-free, reduced description.
arXiv Detail & Related papers (2022-03-10T19:51:02Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.