Finite temperature quantum condensations in the space of states: a new
perspective for quantum annealing
- URL: http://arxiv.org/abs/2203.05803v4
- Date: Wed, 30 Aug 2023 11:33:37 GMT
- Title: Finite temperature quantum condensations in the space of states: a new
perspective for quantum annealing
- Authors: Massimo Ostilli and Carlo Presilla
- Abstract summary: We show that the condensation QPTs recently introduced at zero temperature can naturally be extended to finite temperature.
We illustrate this criterion in the paradigmatic Grover model and in a system of free fermions in a one-dimensional inhomogeneous lattice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In nature, everything occurs at finite temperature and quantum phase
transitions (QPTs) cannot be an exception. Nevertheless, they are still mainly
discussed and formulated at zero temperature. We show that the condensation
QPTs recently introduced at zero temperature can naturally be extended to
finite temperature just by replacing ground state energies with corresponding
free energies. We illustrate this criterion in the paradigmatic Grover model
and in a system of free fermions in a one-dimensional inhomogeneous lattice. In
agreement with expected universal features, the two systems show structurally
similar phase diagrams. Last, we explain how finite temperature condensation
QPTs can be used to construct quantum annealers having, at finite temperature,
output-probability exponentially close to 1 in the system size. As examples we
consider again the Grover model and the fermionic system, the latter being well
within the reach of present heterostructure technology.
Related papers
- Confinement in 1+1D $\mathbb{Z}_2$ Lattice Gauge Theories at Finite Temperature [0.0]
We study confinement in a simple one-dimensional $mathbbZ$ lattice gauge theory at finite temperature and filling.
Our results shed new light on confinement at finite temperature from an experimentally relevant standpoint.
arXiv Detail & Related papers (2023-08-16T18:00:01Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Walking with the atoms in a chemical bond : A perspective using quantum
phase transition [0.0]
Recent observation of a quantum phase transition in a single trapped 171 Yb ion in the Paul trap indicates the possibility of quantum phase transition in finite systems.
This perspective focuses on examining chemical processes at ultracold temperature as quantum phase transitions.
arXiv Detail & Related papers (2022-08-25T15:57:11Z) - Topological phase transitions at finite temperature [0.0]
We introduce two main aspects to the theory of mixed state topology.
First, we discover topological phase transitions as a function of the temperature T, manifesting as changes in winding number of the EGP accumulated over a closed loop in parameter space.
Second, we demonstrate that the EGP itself becomes quantized when key symmetries are present, allowing it to be viewed as a topological marker which can undergo equilibrium topological transitions at non-zero temperatures.
arXiv Detail & Related papers (2022-08-18T18:00:00Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Quantum quench thermodynamics at high temperatures [0.0]
entropy produced when a system undergoes an infinitesimal quench is directly linked to the work parameter susceptibility, making it sensitive to the existence of a quantum critical point.
We show that these individual contributions continue to exhibit signatures of the quantum phase transition, even at arbitrarily high temperatures.
arXiv Detail & Related papers (2021-09-08T15:20:50Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum Phase Transition in a Quantum Ising Chain at Nonzero
Temperatures [0.0]
We study the response of a thermal state of an Ising chain to a nonlocal non-Hermitian perturbation.
The dynamic responses for initial thermal states in different quantum phases are distinct.
arXiv Detail & Related papers (2020-09-24T07:41:32Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.