論文の概要: MIPS-Fusion: Multi-Implicit-Submaps for Scalable and Robust Online
Neural RGB-D Reconstruction
- arxiv url: http://arxiv.org/abs/2308.08741v2
- Date: Thu, 24 Aug 2023 15:43:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 17:10:00.406948
- Title: MIPS-Fusion: Multi-Implicit-Submaps for Scalable and Robust Online
Neural RGB-D Reconstruction
- Title(参考訳): MIPS-Fusion: スケーラブルかつロバストなオンラインニューラルRGB-D再構成のためのマルチインプシットサブマップ
- Authors: Yijie Tang, Jiazhao Zhang, Zhinan Yu, He Wang, Kai Xu
- Abstract要約: 本稿では,新しい暗黙表現-多目的サブマップに基づく,堅牢でスケーラブルなオンラインRGB-D再構成手法を提案する。
本手法では,脳神経サブマップを走査軌道に沿って漸進的に配置し,局所的な神経束の調整によって効率よく学習する。
初めてランダム化された最適化は、学習プロセスにいくつかの重要な設計を施したニューラルトラッキングにおいて可能となり、高速カメラモーションの下でも効率的でロバストなトラッキングを可能にする。
- 参考スコア(独自算出の注目度): 15.853932110058585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MIPS-Fusion, a robust and scalable online RGB-D reconstruction
method based on a novel neural implicit representation --
multi-implicit-submap. Different from existing neural RGB-D reconstruction
methods lacking either flexibility with a single neural map or scalability due
to extra storage of feature grids, we propose a pure neural representation
tackling both difficulties with a divide-and-conquer design. In our method,
neural submaps are incrementally allocated alongside the scanning trajectory
and efficiently learned with local neural bundle adjustments. The submaps can
be refined individually in a back-end optimization and optimized jointly to
realize submap-level loop closure. Meanwhile, we propose a hybrid tracking
approach combining randomized and gradient-based pose optimizations. For the
first time, randomized optimization is made possible in neural tracking with
several key designs to the learning process, enabling efficient and robust
tracking even under fast camera motions. The extensive evaluation demonstrates
that our method attains higher reconstruction quality than the state of the
arts for large-scale scenes and under fast camera motions.
- Abstract(参考訳): 我々は,新しいニューラル暗黙表現-multi-implicit-submapに基づく,堅牢でスケーラブルなオンラインRGB-D再構成手法であるMIPS-Fusionを紹介する。
既存のニューラルネットワークRGB-D再構成手法とは違い,機能グリッドの余分な格納により,単一ニューラルマップの柔軟性やスケーラビリティが欠如しているため,分割・コンカ設計の難しさに対処する純粋ニューラル表現を提案する。
本手法では,脳神経サブマップを走査軌道に沿って漸進的に割り当て,局所的な神経束調整で効率的に学習する。
サブマップはバックエンド最適化で個別に洗練することができ、同時に最適化してサブマップレベルのループクロージャを実現することができる。
一方,ランダム化と勾配に基づくポーズ最適化を組み合わせたハイブリッドトラッキング手法を提案する。
学習プロセスにいくつかの重要な設計を持つニューラルネットワークのトラッキングでは、初めてランダム化最適化が可能となり、高速なカメラの動きでも効率的で堅牢なトラッキングが可能になる。
広範に評価した結果,本手法は大規模シーンや高速カメラ動作において,芸術水準よりも高いコンストラクション品質が得られることがわかった。
関連論文リスト
- FMapping: Factorized Efficient Neural Field Mapping for Real-Time Dense
RGB SLAM [3.6985351289638957]
本稿では,リアルタイム高密度RGB SLAMにおける色付き点クラウドマップの連続的推定を容易にする,効率的なニューラルネットワークマッピングフレームワークであるFMappingを紹介する。
本稿では,シーン表現のための効果的な因子化手法を提案し,シーン再構成の不確実性を低減するためのスライディングウィンドウ戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T11:51:46Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging
with Limited Angular Density [15.143939192429018]
本稿では,関心領域(ROI)を限定されたCT値から再構成する手法を提案する。
ディープメソッドは高速で、データセットからの情報を活用することで、高いリコンストラクション品質に達することができる。
限られたデータからのROI再構成のために設計されたUDBFBと呼ばれる展開ニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2022-09-27T09:10:57Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
本稿では、AGD-Netという、コンパクトで効率的でエンドツーエンドの学習ベースのフレームワークを提案する。
まず、古典的勾配降下アルゴリズムに基づいて問題を明示的に定式化する。
AGD-Netは、平均1.0dB以上のリコンストラクション品質を向上させることができる。
論文 参考訳(メタデータ) (2021-08-12T05:54:09Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
本稿では,ロバスト主成分分析(RPCA)問題に対するディープアンフォールディングに基づくネットワーク設計を提案する。
既存の設計とは異なり,本手法は連続するビデオフレームのスパース表現間の時間的相関をモデル化することに焦点を当てている。
移動MNISTデータセットを用いた実験により、提案したネットワークは、ビデオフォアグラウンドとバックグラウンドの分離作業において、最近提案された最先端のRPCAネットワークより優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T11:40:09Z) - Steepest Descent Neural Architecture Optimization: Escaping Local
Optimum with Signed Neural Splitting [60.97465664419395]
我々は、局所最適性問題に対処する分割降下フレームワークの顕著で驚くべき拡張を開発する。
分割時の正と負の両方の重みを単純に許すことで、S2Dにおける分裂安定性の出現を排除できる。
我々は,CIFAR-100, ImageNet, ModelNet40 といった,S2D などの先進的なニューラルネットワークの精度とエネルギー効率の学習方法よりも優れている,様々な挑戦的なベンチマーク上で,本手法を検証する。
論文 参考訳(メタデータ) (2020-03-23T17:09:27Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。