Deep Ear Biometrics for Gender Classification
- URL: http://arxiv.org/abs/2308.08797v1
- Date: Thu, 17 Aug 2023 06:15:52 GMT
- Title: Deep Ear Biometrics for Gender Classification
- Authors: Ritwiz Singh, Keshav Kashyap, Rajesh Mukherjee, Asish Bera, and Mamata
Dalui Chakraborty
- Abstract summary: We have developed a deep convolutional neural network (CNN) model for automatic gender classification using the samples of ear images.
The proposed model has achieved 93% accuracy on the EarVN1.0 ear dataset.
- Score: 3.285531771049763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human gender classification based on biometric features is a major concern
for computer vision due to its vast variety of applications. The human ear is
popular among researchers as a soft biometric trait, because it is less
affected by age or changing circumstances, and is non-intrusive. In this study,
we have developed a deep convolutional neural network (CNN) model for automatic
gender classification using the samples of ear images. The performance is
evaluated using four cutting-edge pre-trained CNN models. In terms of trainable
parameters, the proposed technique requires significantly less computational
complexity. The proposed model has achieved 93% accuracy on the EarVN1.0 ear
dataset.
Related papers
- Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
Automated classification and similarity retrieval aid physicians in decision-making to diagnose possible genetic conditions as early as possible.
Previous work has addressed the problem as a classification problem and used deep learning methods.
In this study, we used a facial recognition model trained on a large corpus of healthy individuals as a pre-task and transferred it to facial phenotype recognition.
arXiv Detail & Related papers (2022-10-23T11:52:57Z) - Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG [0.47248250311484113]
Deep neural networks (DNN) show significant advantages in computer vision applications.
We present here a shallow neural network that uses mainly two convolutional neural network layers, with relatively few parameters and fast to learn spectral-temporal features from EEG.
Experimental results showed that the shallow CNN model outperformed all the other models and achieved the highest classification accuracy of 90.68%.
arXiv Detail & Related papers (2022-09-26T02:15:22Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Automated Scoring of Graphical Open-Ended Responses Using Artificial
Neural Networks [0.0]
convolutional neural networks (CNNs) outperform feedforward neural networks in both loss and accuracy.
As an additional innovation, we outline a method to select human rated responses for the training sample based on an application of the expected response function.
This paper argues that CNN-based automated scoring of image responses is a highly accurate procedure that could potentially replace the workload and cost of second human raters for large scale assessments.
arXiv Detail & Related papers (2022-01-05T19:00:18Z) - Novel EEG based Schizophrenia Detection with IoMT Framework for Smart
Healthcare [0.0]
Schizophrenia(Sz) is a brain disorder that severely affects the thinking, behaviour, and feelings of people all around the world.
EEG is a non-linear time-seriesi signal and utilizing it for investigation is rather crucial due to its non-linear structure.
This paper aims to improve the performance of EEG based Sz detection using a deep learning approach.
arXiv Detail & Related papers (2021-11-19T18:21:20Z) - A Distillation Learning Model of Adaptive Structural Deep Belief Network
for AffectNet: Facial Expression Image Database [0.0]
We have developed the adaptive structure learning method of Deep Belief Network (DBN)
In this paper, our model is applied to a facial expression image data set, AffectNet.
The classification accuracy was improved from 78.4% to 91.3% by the proposed method.
arXiv Detail & Related papers (2021-10-25T08:01:36Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Data augmentation using generative networks to identify dementia [20.137419355252362]
We show that generative models can be used as an effective approach for data augmentation.
In this paper, we investigate the application of a similar approach to different types of speech and audio-based features extracted from our automatic dementia detection system.
arXiv Detail & Related papers (2020-04-13T15:05:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.