論文の概要: Mitigating Semantic Confusion from Hostile Neighborhood for Graph Active
Learning
- arxiv url: http://arxiv.org/abs/2308.08823v1
- Date: Thu, 17 Aug 2023 07:06:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 17:34:02.672409
- Title: Mitigating Semantic Confusion from Hostile Neighborhood for Graph Active
Learning
- Title(参考訳): グラフ能動学習のためのホスト近傍からの意味的融合の軽減
- Authors: Tianmeng Yang, Min Zhou, Yujing Wang, Zhengjie Lin, Lujia Pan, Bin
Cui, Yunhai Tong
- Abstract要約: Graph Active Learning(GAL)は、グラフニューラルネットワーク(GNN)のパフォーマンスを最大化するためのアノテーションのための、グラフで最も情報に富むノードを見つけることを目的としている。
Gal戦略は、特にグラフがノイズの多い場合、選択したトレーニングセットに意味的な混乱をもたらす可能性がある。
本稿では,意味的混乱を緩和するために,グラフのためのセマンティック・アウェア・アクティブ・ラーニング・フレームワークを提案する。
- 参考スコア(独自算出の注目度): 38.5372139056485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Active Learning (GAL), which aims to find the most informative nodes in
graphs for annotation to maximize the Graph Neural Networks (GNNs) performance,
has attracted many research efforts but remains non-trivial challenges. One
major challenge is that existing GAL strategies may introduce semantic
confusion to the selected training set, particularly when graphs are noisy.
Specifically, most existing methods assume all aggregating features to be
helpful, ignoring the semantically negative effect between inter-class edges
under the message-passing mechanism. In this work, we present Semantic-aware
Active learning framework for Graphs (SAG) to mitigate the semantic confusion
problem. Pairwise similarities and dissimilarities of nodes with semantic
features are introduced to jointly evaluate the node influence. A new
prototype-based criterion and query policy are also designed to maintain
diversity and class balance of the selected nodes, respectively. Extensive
experiments on the public benchmark graphs and a real-world financial dataset
demonstrate that SAG significantly improves node classification performances
and consistently outperforms previous methods. Moreover, comprehensive analysis
and ablation study also verify the effectiveness of the proposed framework.
- Abstract(参考訳): Graph Active Learning(GAL)は、グラフニューラルネットワーク(GNN)のパフォーマンスを最大化するアノテーションのための、グラフで最も情報性の高いノードを見つけることを目的としている。
1つの大きな課題は、既存のGAL戦略が選択したトレーニングセットに意味的な混乱をもたらす可能性があることだ。
特に、既存のほとんどのメソッドは、すべての集約機能が役に立つと仮定しており、メッセージパッシングメカニズムの下でクラス間エッジ間の意味的にネガティブな効果を無視している。
本研究では,セマンティック・アウェア・アクティブ・ラーニング・フレームワーク(Semantic-Aware Active Learning framework for Graphs,SAG)を提案する。
意味的特徴を有するノードの相似性と相似性を導入し、ノードの影響を共同で評価する。
新たなプロトタイプベースの基準とクエリポリシも,選択したノードの多様性とクラスバランスを維持するように設計されている。
公開ベンチマークグラフと実世界の財務データセットに関する大規模な実験は、SAGがノード分類性能を著しく改善し、従来手法よりも一貫して向上していることを示している。
また,包括的解析およびアブレーション研究により,提案手法の有効性が検証された。
関連論文リスト
- Unveiling Global Interactive Patterns across Graphs: Towards Interpretable Graph Neural Networks [31.29616732552006]
グラフニューラルネットワーク(GNN)は、グラフマイニングの著名なフレームワークとして登場した。
本稿では,グラフ分類に内在的に解釈可能な新しい手法を提案する。
グローバル対話パターン(GIP)学習は、学習可能なグローバル対話パターンを導入し、決定を明示的に解釈する。
論文 参考訳(メタデータ) (2024-07-02T06:31:13Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
本稿では,グラフニューラルネットワーク (GNN) とGAN (Generative Adrial Network) を組み合わせた新しいフレームワークを提案する。
このフレームワークには高度なエッジ生成と選択モジュールが含まれており、合成ノードとエッジを同時に生成することができる。
論文 参考訳(メタデータ) (2023-12-11T16:52:20Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
統計的観点から,ノードプロファイルとトポロジの関係を定量化するAMUDを提案する。
また、AMUDのための新しい有向グラフ学習パラダイムとしてADPAを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:54:11Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Partition-Based Active Learning for Graph Neural Networks [17.386869902409153]
グラフニューラルネットワーク(GNN)を用いた半教師あり学習の課題を,アクティブな学習環境において検討する。
GNNのための新しいパーティションベースのアクティブラーニングアプローチであるGraphPartを提案する。
論文 参考訳(メタデータ) (2022-01-23T22:51:14Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。