論文の概要: D-IF: Uncertainty-aware Human Digitization via Implicit Distribution
Field
- arxiv url: http://arxiv.org/abs/2308.08857v2
- Date: Tue, 17 Oct 2023 05:27:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 20:47:31.096846
- Title: D-IF: Uncertainty-aware Human Digitization via Implicit Distribution
Field
- Title(参考訳): D-IF:不特定分布場による不確かさを意識した人間のデジタル化
- Authors: Xueting Yang, Yihao Luo, Yuliang Xiu, Wei Wang, Hao Xu, Zhaoxin Fan
- Abstract要約: そこで本研究では,暗黙の値を適応不確かさ分布に置き換えて,表面への距離に基づいて点を区別する手法を提案する。
この分散の遷移に対する単純な値は、ほぼすべてのベースラインに対して大きな改善をもたらす。
その結果、不確実性分布損失を用いてトレーニングされたモデルは、より複雑なしわや現実的な手足を捉えることができることがわかった。
- 参考スコア(独自算出の注目度): 16.301611237147863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realistic virtual humans play a crucial role in numerous industries, such as
metaverse, intelligent healthcare, and self-driving simulation. But creating
them on a large scale with high levels of realism remains a challenge. The
utilization of deep implicit function sparks a new era of image-based 3D
clothed human reconstruction, enabling pixel-aligned shape recovery with fine
details. Subsequently, the vast majority of works locate the surface by
regressing the deterministic implicit value for each point. However, should all
points be treated equally regardless of their proximity to the surface? In this
paper, we propose replacing the implicit value with an adaptive uncertainty
distribution, to differentiate between points based on their distance to the
surface. This simple ``value to distribution'' transition yields significant
improvements on nearly all the baselines. Furthermore, qualitative results
demonstrate that the models trained using our uncertainty distribution loss,
can capture more intricate wrinkles, and realistic limbs. Code and models are
available for research purposes at https://github.com/psyai-net/D-IF_release.
- Abstract(参考訳): リアルな仮想人間は、メタバース、インテリジェントヘルスケア、自動運転シミュレーションなど、多くの産業において重要な役割を果たす。
しかし、それらを高いレベルの現実主義で大規模に作ることは、依然として課題である。
深部陰影関数の利用は、画像ベースの3d衣料ヒト再構成の新しい時代を火花とし、細部でピクセル列形状の復元を可能にした。
その後、ほとんどの研究は、各点に対する決定論的暗黙の値を回帰することで、表面を探索する。
しかし、すべての点が表面との距離に関係なく等しく扱われるべきだろうか。
本稿では,暗黙的な値を適応不確実性分布に置き換えて,表面への距離に基づいて点を区別する手法を提案する。
この単純な ``value to distribution'' の遷移は、ほぼすべてのベースラインで大幅な改善をもたらす。
さらに, 不確実性分布損失を用いて訓練したモデルにより, より複雑なしわ, 現実的な手足を捕捉できることを示す。
コードとモデルは、https://github.com/psyai-net/d-if_releaseで研究目的に利用できる。
関連論文リスト
- Source-Free and Image-Only Unsupervised Domain Adaptation for Category
Level Object Pose Estimation [18.011044932979143]
3DUDAは、3Dや深度データを使わずに、ニュアンスドライデンのターゲットドメインに適応できる手法である。
対象のカテゴリを単純な立方体メッシュとして表現し、ニューラル特徴活性化の生成モデルを利用する。
本手法は,グローバルな擬似ラベル付きデータセットの微調整を軽度な仮定でシミュレートする。
論文 参考訳(メタデータ) (2024-01-19T17:48:05Z) - 3D Human Mesh Estimation from Virtual Markers [34.703241940871635]
体表面上の64個のランドマークキーポイントを学習する仮想マーカーを中間表現として提示する。
提案手法は3つのデータセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-21T10:30:43Z) - Finding Differences Between Transformers and ConvNets Using
Counterfactual Simulation Testing [82.67716657524251]
本稿では,ニューラルネットワークの自然的変動に対するロバスト性を研究するための反現実的枠組みを提案する。
我々の手法は、最近リリースされた最先端の畳み込みニューラルネットワークとビジョントランスフォーマーの頑健さを公平に比較することができる。
論文 参考訳(メタデータ) (2022-11-29T18:59:23Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
そこで本研究では,シミュレートからリアルなポーズ推定のための新しい手法であるCPPF++を提案する。
投票衝突による課題に対処するため,投票の不確実性をモデル化する新たなアプローチを提案する。
ノイズの多いペアフィルタリング、オンラインアライメント最適化、機能アンサンブルなど、いくつかの革新的なモジュールを組み込んでいます。
論文 参考訳(メタデータ) (2022-11-24T03:27:00Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
提案手法では,自然画像に対する基本的エンドツーエンド再構築フレームワークを導入し,正確な地平のポーズが得られない。
そこで,モデルが解の第一の推算を生成するハイブリッド・インバージョン・スキームを適用する。
当社のフレームワークでは,イメージを10ステップでデレンダリングすることが可能で,現実的なシナリオで使用することが可能です。
論文 参考訳(メタデータ) (2022-11-21T17:42:42Z) - Autoregressive Uncertainty Modeling for 3D Bounding Box Prediction [63.3021778885906]
3Dバウンディングボックスは、多くのコンピュータビジョンアプリケーションで広く使われている中間表現である。
本稿では,自己回帰モデルを利用して高い信頼度予測と意味のある不確実性対策を行う手法を提案する。
我々はシミュレーションデータセットであるCOB-3Dをリリースし、現実世界のロボティクスアプリケーションで発生する新しいタイプのあいまいさを強調します。
論文 参考訳(メタデータ) (2022-10-13T23:57:40Z) - Self-supervised Human Mesh Recovery with Cross-Representation Alignment [20.69546341109787]
自己教師付きヒューマンメッシュリカバリ手法は、3Dアノテーション付きベンチマークデータセットの可用性と多様性が制限されているため、一般化性が低い。
頑健だがスパースな表現(2Dキーポイント)からの相補的情報を利用した相互表現アライメントを提案する。
この適応的相互表現アライメントは、偏差から明示的に学習し、相補的な情報(疎表現からの豊かさと密表現からの堅牢さ)をキャプチャする。
論文 参考訳(メタデータ) (2022-09-10T04:47:20Z) - SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural
Implicit Shapes [117.76767853430243]
SNARFは多角形メッシュに対する線形ブレンドスキンの利点とニューラル暗黙表面の利点を組み合わせたものである。
反復ルート探索を用いて任意の変形点のすべての正準対応を探索するフォワードスキンモデルを提案する。
最先端のニューラルネットワークの暗黙的表現と比較すると,このアプローチは,精度を維持しつつ,未認識のポーズを一般化する。
論文 参考訳(メタデータ) (2021-04-08T17:54:59Z) - Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
Estimation [74.76155168705975]
Deep Bingham Networks (DBN)は、3Dデータに関するほぼすべての実生活アプリケーションで発生するポーズ関連の不確実性と曖昧性を扱うことができる。
DBNは、(i)異なる分布モードを生成できる多仮説予測ヘッドにより、アートダイレクトポーズ回帰ネットワークの状態を拡張する。
トレーニング中のモードや後方崩壊を回避し,数値安定性を向上させるための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-12-20T19:20:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。