Optimal Resource Allocation for U-Shaped Parallel Split Learning
- URL: http://arxiv.org/abs/2308.08896v3
- Date: Mon, 9 Oct 2023 03:16:07 GMT
- Title: Optimal Resource Allocation for U-Shaped Parallel Split Learning
- Authors: Song Lyu, Zheng Lin, Guanqiao Qu, Xianhao Chen, Xiaoxia Huang, and Pan
Li
- Abstract summary: Split learning (SL) has emerged as a promising approach for model training without revealing the raw data samples from the data owners.
Traditional SL inevitably leaks label privacy as the tail model (with the last layers) should be placed on the server.
One promising solution is to utilize U-shaped architecture to leave both early layers and last layers on the user side.
- Score: 15.069132131105063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Split learning (SL) has emerged as a promising approach for model training
without revealing the raw data samples from the data owners. However,
traditional SL inevitably leaks label privacy as the tail model (with the last
layers) should be placed on the server. To overcome this limitation, one
promising solution is to utilize U-shaped architecture to leave both early
layers and last layers on the user side. In this paper, we develop a novel
parallel U-shaped split learning and devise the optimal resource optimization
scheme to improve the performance of edge networks. In the proposed framework,
multiple users communicate with an edge server for SL. We analyze the
end-to-end delay of each client during the training process and design an
efficient resource allocation algorithm, called LSCRA, which finds the optimal
computing resource allocation and split layers. Our experimental results show
the effectiveness of LSCRA and that U-shaped parallel split learning can
achieve a similar performance with other SL baselines while preserving label
privacy. Index Terms: U-shaped network, split learning, label privacy, resource
allocation, 5G/6G edge networks.
Related papers
- Towards Optimal Customized Architecture for Heterogeneous Federated
Learning with Contrastive Cloud-Edge Model Decoupling [20.593232086762665]
Federated learning, as a promising distributed learning paradigm, enables collaborative training of a global model across multiple network edge clients without the need for central data collecting.
We propose a novel federated learning framework called FedCMD, a model decoupling tailored to the Cloud-edge supported federated learning.
Our motivation is that, by the deep investigation of the performance of selecting different neural network layers as the personalized head, we found rigidly assigning the last layer as the personalized head in current studies is not always optimal.
arXiv Detail & Related papers (2024-03-04T05:10:28Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Subspace based Federated Unlearning [75.90552823500633]
Federated unlearning (FL) aims to remove a specified target client's contribution in FL to satisfy the user's right to be forgotten.
Most existing federated unlearning algorithms require the server to store the history of the parameter updates.
We propose a simple-yet-effective subspace based federated unlearning method, dubbed SFU, that lets the global model perform gradient ascent.
arXiv Detail & Related papers (2023-02-24T04:29:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems.
We propose SmartFL, a generic approach that optimize the server-side aggregation process.
We provide theoretical analyses of the convergence and generalization capacity for SmartFL.
arXiv Detail & Related papers (2022-11-10T13:20:56Z) - Server-Side Local Gradient Averaging and Learning Rate Acceleration for
Scalable Split Learning [82.06357027523262]
Federated learning (FL) and split learning (SL) are two spearheads possessing their pros and cons, and are suited for many user clients and large models.
In this work, we first identify the fundamental bottlenecks of SL, and thereby propose a scalable SL framework, coined SGLR.
arXiv Detail & Related papers (2021-12-11T08:33:25Z) - Asynchronous Semi-Decentralized Federated Edge Learning for
Heterogeneous Clients [3.983055670167878]
Federated edge learning (FEEL) has drawn much attention as a privacy-preserving distributed learning framework for mobile edge networks.
In this work, we investigate a novel semi-decentralized FEEL (SD-FEEL) architecture where multiple edge servers collaborate to incorporate more data from edge devices in training.
arXiv Detail & Related papers (2021-12-09T07:39:31Z) - SplitFed: When Federated Learning Meets Split Learning [16.212941272007285]
Federated learning (FL) and split learning (SL) are two popular distributed machine learning approaches.
This paper presents a novel approach, named splitfed learning (SFL), that amalgamates the two approaches.
SFL provides similar test accuracy and communication efficiency as SL while significantly decreasing its computation time per global epoch than in SL for multiple clients.
arXiv Detail & Related papers (2020-04-25T08:52:50Z) - OL4EL: Online Learning for Edge-cloud Collaborative Learning on
Heterogeneous Edges with Resource Constraints [18.051084376447655]
We propose a novel framework of 'learning to learn' for effective Edge Learning (EL) on heterogeneous edges with resource constraints.
We propose an Online Learning for EL (OL4EL) framework based on the budget-limited multi-armed bandit model.
OL4EL supports both synchronous and asynchronous learning patterns, and can be used for both supervised and unsupervised learning tasks.
arXiv Detail & Related papers (2020-04-22T03:51:58Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
Machine learning algorithms are deployed at the network edge for training artificial intelligence (AI) models.
This paper focuses on the novel joint design of parameter (computation load) allocation and bandwidth allocation.
arXiv Detail & Related papers (2020-03-10T05:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.