論文の概要: Predicting Crop Yield With Machine Learning: An Extensive Analysis Of
Input Modalities And Models On a Field and sub-field Level
- arxiv url: http://arxiv.org/abs/2308.08948v1
- Date: Thu, 17 Aug 2023 12:40:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 16:45:23.349348
- Title: Predicting Crop Yield With Machine Learning: An Extensive Analysis Of
Input Modalities And Models On a Field and sub-field Level
- Title(参考訳): 機械学習による作物収量の予測:フィールドおよびサブフィールドレベルでの入力モダリティとモデルの拡張解析
- Authors: Deepak Pathak, Miro Miranda, Francisco Mena, Cristhian Sanchez,
Patrick Helber, Benjamin Bischke, Peter Habelitz, Hiba Najjar, Jayanth
Siddamsetty, Diego Arenas, Michaela Vollmer, Marcela Charfuelan, Marlon
Nuske, Andreas Dengel
- Abstract要約: 我々は,高解像度の収量マップを地中真理データとして使用し,サブフィールドレベルでの作物および機械学習モデルの訓練を行う。
我々は、天気、土壌、DEMデータを含む他の相補的なモダリティを含む入力データの一次モダリティとしてSentinel-2衛星画像を使用する。
提案手法は,グローバルな範囲で利用可能な入力モダリティを用いて,グローバルな拡張性を実現する。
- 参考スコア(独自算出の注目度): 24.995959334158986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a simple yet effective early fusion method for crop yield
prediction that handles multiple input modalities with different temporal and
spatial resolutions. We use high-resolution crop yield maps as ground truth
data to train crop and machine learning model agnostic methods at the sub-field
level. We use Sentinel-2 satellite imagery as the primary modality for input
data with other complementary modalities, including weather, soil, and DEM
data. The proposed method uses input modalities available with global coverage,
making the framework globally scalable. We explicitly highlight the importance
of input modalities for crop yield prediction and emphasize that the
best-performing combination of input modalities depends on region, crop, and
chosen model.
- Abstract(参考訳): 本研究では,時間分解能と空間分解能の異なる複数の入力モードを扱う作物収量予測のための簡易かつ効果的な早期融合手法を提案する。
我々は,高分解能作物収量マップを地上データとして,作物と機械学習モデル非依存手法をサブフィールドレベルで学習する。
我々は、天気、土壌、DEMデータを含む他の相補的なデータを含む入力データにSentinel-2衛星画像を使用する。
提案手法は,グローバルな範囲で利用可能な入力モダリティを用いて,グローバルな拡張性を実現する。
我々は,作物収量予測における入力モダリティの重要性を明確に強調し,入力モダリティの最良の組み合わせが地域,作物,選択モデルに依存することを強調した。
関連論文リスト
- Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field
Crop Yield Prediction [24.995959334158986]
本研究では,異なる作物(スギ,コムギ,ラプシード)と地域(アルジャンティナ,ウルグアイ,ドイツ)の収量を予測するための,新しい多視点学習手法を提案する。
我々の入力データには、センチネル2衛星からのマルチスペクトル光学画像と、土壌特性や地形情報などの静的特徴を補完して、作物の生育期における動的特徴として気象データが含まれている。
データを効果的に融合するために、専用ビューエンコーダとGated Unit (GU)モジュールからなるMulti-view Gated Fusion (MVGF)モデルを導入する。
MVGFモデルは10m分解能でサブフィールドレベルで訓練される
論文 参考訳(メタデータ) (2024-01-22T11:01:52Z) - Deep-Learning Framework for Optimal Selection of Soil Sampling Sites [0.0]
この研究は、画像処理におけるディープラーニングの最近の進歩を活用して、フィールドの重要な特性を示す最適な位置を見つける。
本フレームワークは,自己保持機構をバックボーンとするエンコーダデコーダアーキテクチャで構築されている。
このモデルはテストデータセットにおいて、平均精度99.52%、IoU平均インターセクション57.35%、Dice Coefficient平均71.47%という驚くべき結果を得た。
論文 参考訳(メタデータ) (2023-09-02T16:19:21Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Integrating processed-based models and machine learning for crop yield
prediction [1.3107669223114085]
本研究では,ハイブリッドメタモデリング手法を用いてジャガイモ収量予測を行う。
作物成長モデルを用いて、畳み込みニューラルネットを(前)訓練するための合成データを生成する。
シリコンに適用すると、我々のメタモデリング手法は、純粋にデータ駆動のアプローチからなるベースラインよりも優れた予測が得られる。
論文 参考訳(メタデータ) (2023-07-25T12:51:25Z) - Enhance Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic Masked World Model [38.722096508198106]
本稿では,SEMantic Masked Recurrent World Model (SEM2)を提案する。
提案手法は, サンプル効率と入力順列に対するロバスト性の観点から, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2022-10-08T13:00:08Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
本研究は, ブドウ畑の収量推定に深層学習と併用した近位画像の応用を実証する。
オブジェクト検出、CNN回帰、トランスフォーマーモデルという3つのモデルアーキテクチャがテストされた。
本研究は,ブドウの収量予測における近位画像と深層学習の適用性を示した。
論文 参考訳(メタデータ) (2022-08-04T01:34:46Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
現在の手法は、補助的なタスクを訓練したり、高価な粗大な見積もりを適用したりするための外部データに依存している。
そこで我々は, 簡易かつ効率的に適用可能な, 逆学習に基づく新しい手法を開発した。
実世界の5つのクラウドカウントベンチマークに対するアプローチを評価し、既存のアプローチを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-05-12T02:23:25Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach [2.7393821783237184]
大規模データ分析は、我々の社会でデータが増大するにつれて、指数的な速度で成長している。
ディープラーニングモデルはたくさんのリソースを必要とし、分散トレーニングが必要です。
本稿では,分散学習のためのマルチ基準アプローチを提案する。
論文 参考訳(メタデータ) (2021-11-27T07:10:25Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
多くの共通制御アプリケーションにおいて、優れた性能を達成するためには、グローバルに正確なモデルを必要としない。
本稿では,状態-作用空間の有界部分集合上の正確なモデルを得ることを目的としたガウス過程状態空間モデルに対する能動的学習戦略を提案する。
モデル予測制御を用いることで、探索中に収集した情報を統合し、探索戦略を適応的に改善する。
論文 参考訳(メタデータ) (2020-05-04T05:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。