論文の概要: Embracing assay heterogeneity with neural processes for markedly
improved bioactivity predictions
- arxiv url: http://arxiv.org/abs/2308.09086v1
- Date: Thu, 17 Aug 2023 16:26:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 15:53:56.169638
- Title: Embracing assay heterogeneity with neural processes for markedly
improved bioactivity predictions
- Title(参考訳): 生体活性予測を著しく改善する神経プロセスによるアッセイの不均質性の導入
- Authors: Lucian Chan and Marcel Verdonk and Carl Poelking
- Abstract要約: リガンドの生物活性を予測することは、コンピュータ支援薬物発見において最も困難かつ最も重要な課題の1つである。
長年のデータ収集とキュレーションの努力にもかかわらず、生物活性データは希少で不均一である。
異種アッセイ間の情報シナジーを利用した階層型メタラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the bioactivity of a ligand is one of the hardest and most
important challenges in computer-aided drug discovery. Despite years of data
collection and curation efforts by research organizations worldwide,
bioactivity data remains sparse and heterogeneous, thus hampering efforts to
build predictive models that are accurate, transferable and robust. The
intrinsic variability of the experimental data is further compounded by data
aggregation practices that neglect heterogeneity to overcome sparsity. Here we
discuss the limitations of these practices and present a hierarchical
meta-learning framework that exploits the information synergy across disparate
assays by successfully accounting for assay heterogeneity. We show that the
model achieves a drastic improvement in affinity prediction across diverse
protein targets and assay types compared to conventional baselines. It can
quickly adapt to new target contexts using very few observations, thus enabling
large-scale virtual screening in early-phase drug discovery.
- Abstract(参考訳): リガンドの生物活性を予測することは、コンピュータによる創薬において最も困難かつ最も重要な課題の1つである。
世界中の研究機関による長年のデータ収集とキュレーションの努力にもかかわらず、生物活性データは希少で不均一であり、正確で転送可能で堅牢な予測モデルを構築するための努力を妨げている。
実験データの本質的な変動性は、不均質性を無視してスパーシティを克服するデータ集約プラクティスによってさらに複合される。
本稿では,これらの実践の限界について論じ,異種鑑定における情報相乗効果を利用した階層的メタラーニングフレームワークを提案する。
本モデルは,従来のベースラインと比較して,多様なタンパク質標的およびアッセイタイプにまたがる親和性予測を大幅に改善することを示す。
非常に少ない観測で新しいターゲットコンテキストに迅速に適応できるため、早期段階の薬物発見において大規模な仮想スクリーニングが可能となる。
関連論文リスト
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioELは、トレーニングコーパス全体から同様のインスタンスを予測のヒントとして参照する機能を備えたBioELモデルを提供する。
k$NN-BioELは、いくつかのデータセットで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-12-15T14:04:23Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - InstructBio: A Large-scale Semi-supervised Learning Paradigm for
Biochemical Problems [38.57333125315448]
InstructMolは、ラベルなし例をうまく活用するための半教師付き学習アルゴリズムである。
InstructBioは分子モデルの一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2023-04-08T04:19:22Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Modelling Technical and Biological Effects in scRNA-seq data with
Scalable GPLVMs [6.708052194104378]
我々は,ガウス過程潜在変数モデルである確率的非線形次元減少に対する一般的なアプローチを拡張し,大規模単一セルデータセットに拡張する。
鍵となる考え方は、高速な変動推論を可能にする下位境界の分解可能性を保存する拡張カーネルを使用することである。
論文 参考訳(メタデータ) (2022-09-14T15:25:15Z) - A Deep Variational Approach to Clustering Survival Data [5.871238645229228]
変分深層クラスタリングにおけるクラスタサバイバルデータに対する新しい確率的アプローチを提案する。
提案手法は,説明変数と潜在的に検閲された生存時間の両方の分布を明らかにするために,深い生成モデルを用いている。
論文 参考訳(メタデータ) (2021-06-10T14:10:25Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
本稿では,正規化とアンサンブルのアイデアを組み合わせた高次元二項分類問題に対する新しいアプローチを提案する。
がん,多発性硬化症,乾皮症などの共通疾患を含むいくつかの医学的データセットを用いて,バイオマーカーの予測精度と同定の点で,本手法の優れた性能を実証した。
論文 参考訳(メタデータ) (2021-02-17T05:57:26Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。