論文の概要: Hyperbolic Face Anti-Spoofing
- arxiv url: http://arxiv.org/abs/2308.09107v1
- Date: Thu, 17 Aug 2023 17:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 15:57:44.131729
- Title: Hyperbolic Face Anti-Spoofing
- Title(参考訳): Hyperbolic Face Anti-Spoofing
- Authors: Shuangpeng Han, Rizhao Cai, Yawen Cui, Zitong Yu, Yongjian Hu, Alex
Kot
- Abstract要約: 双曲空間におけるよりリッチな階層的および差別的なスプーフィングキューを学習することを提案する。
単調なFAS学習では、特徴埋め込みはポアンカーボールに投影され、双対対対数回帰層は分類のためにカスケードされる。
双曲空間における消失勾配問題を緩和するために,双曲モデルのトレーニング安定性を高めるために,新しい特徴クリッピング法を提案する。
- 参考スコア(独自算出の注目度): 21.981129022417306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning generalized face anti-spoofing (FAS) models against presentation
attacks is essential for the security of face recognition systems. Previous FAS
methods usually encourage models to extract discriminative features, of which
the distances within the same class (bonafide or attack) are pushed close while
those between bonafide and attack are pulled away. However, these methods are
designed based on Euclidean distance, which lacks generalization ability for
unseen attack detection due to poor hierarchy embedding ability. According to
the evidence that different spoofing attacks are intrinsically hierarchical, we
propose to learn richer hierarchical and discriminative spoofing cues in
hyperbolic space. Specifically, for unimodal FAS learning, the feature
embeddings are projected into the Poincar\'e ball, and then the hyperbolic
binary logistic regression layer is cascaded for classification. To further
improve generalization, we conduct hyperbolic contrastive learning for the
bonafide only while relaxing the constraints on diverse spoofing attacks. To
alleviate the vanishing gradient problem in hyperbolic space, a new feature
clipping method is proposed to enhance the training stability of hyperbolic
models. Besides, we further design a multimodal FAS framework with Euclidean
multimodal feature decomposition and hyperbolic multimodal feature fusion &
classification. Extensive experiments on three benchmark datasets (i.e., WMCA,
PADISI-Face, and SiW-M) with diverse attack types demonstrate that the proposed
method can bring significant improvement compared to the Euclidean baselines on
unseen attack detection. In addition, the proposed framework is also
generalized well on four benchmark datasets (i.e., MSU-MFSD, IDIAP
REPLAY-ATTACK, CASIA-FASD, and OULU-NPU) with a limited number of attack types.
- Abstract(参考訳): 顔認識システムのセキュリティには,プレゼンテーション攻撃に対する一般化されたフェイスアンチスプーフモデル(fas)の学習が不可欠である。
従来のfas法は、通常、同一クラス内の距離(ボナフィドまたはアタック)が接近し、ボナフィドとアタックの間の距離が引き離されるような識別的特徴を抽出するモデルを奨励する。
しかし,これらの手法はユークリッド距離に基づいて設計されており,階層埋め込み能力の低下による攻撃検出の一般化能力に欠ける。
異なるスプーフィング攻撃が本質的に階層的であることの証拠から,双曲空間においてよりリッチな階層的および識別的スプーフィング手がかりを学ぶことを提案する。
具体的には、一元的FAS学習において、特徴埋め込みはポインカーボールに投影され、双対対対数回帰層は分類のためにカスケードされる。
一般化をさらに促進するため,多様なスプーフィング攻撃に対する制約を緩和しつつ,ボナフィドに対する双曲的コントラスト学習を行う。
双曲空間における消失勾配問題を緩和するために,双曲モデルのトレーニング安定性を高めるために,新しい特徴クリッピング法を提案する。
さらに、ユークリッド型マルチモーダル特徴分解と双曲型マルチモーダル特徴融合と分類を用いたマルチモーダルFASフレームワークを設計する。
多様な攻撃型を持つ3つのベンチマークデータセット(WMCA, PADISI-Face, SiW-M)の大規模な実験により, 提案手法は, 目に見えない攻撃検出におけるユークリッドベースラインと比較して, 大幅な改善をもたらすことが示された。
さらに、提案フレームワークは、4つのベンチマークデータセット(MSU-MFSD、IDIAP REPLAY-ATTACK、CASIA-FASD、OULU-NPU)に対して、限られた数の攻撃タイプで適切に一般化されている。
関連論文リスト
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Hyp-OC: Hyperbolic One Class Classification for Face Anti-Spoofing [30.6907043124415]
顔認識システムは偽造攻撃に対して脆弱であり、容易に回避できる。
フェース・アンチ・スプーフィング (FAS) の最も古い研究は、これを二段階の分類タスクとしてアプローチした。
本研究では,一級視点から顔の偽造防止タスクを再構築し,新しい双曲型一級分類フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-22T17:59:18Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Disentangled Representation with Dual-stage Feature Learning for Face
Anti-spoofing [18.545438302664756]
事前に定義されたスプーフ攻撃タイプに過度に適合しないように、より一般化され差別的な特徴を学ぶことが不可欠である。
本稿では,無関係な特徴からスプーフ関連特徴を効果的に解き放つことができる,新しい二段階不整形表現学習法を提案する。
論文 参考訳(メタデータ) (2021-10-18T10:22:52Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Learning One Class Representations for Face Presentation Attack
Detection using Multi-channel Convolutional Neural Networks [7.665392786787577]
プレゼンテーションアタック検出(PAD)メソッドは、目に見えないアタックを一般化するのに失敗することが多い。
マルチチャネル畳み込みニューラルネットワーク(MCCNN)で学習する一クラス分類器を用いたPADのための新しいフレームワークを提案する。
新たな損失関数が導入されたため、ネットワークは攻撃の表現から遠ざかって、ボナフィドクラスのコンパクトな埋め込みを学習せざるを得なくなった。
提案フレームワークは,ボナフィドおよび(既知の)攻撃クラスから堅牢なPADシステムを学習するための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-07-22T14:19:33Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。