RTB Formulation Using Point Process
- URL: http://arxiv.org/abs/2308.09122v1
- Date: Thu, 17 Aug 2023 17:57:59 GMT
- Title: RTB Formulation Using Point Process
- Authors: Seong Jin Lee, Bumsik Kim
- Abstract summary: We propose a general framework for modelling repeated auctions in the Real Time Bidding (RTB) ecosystem using point processes.
We specify the player's optimal strategy under various scenarios.
It is critical to consider the joint distribution of utility and market condition instead of estimating the marginal distributions independently.
- Score: 1.7132914341329852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a general stochastic framework for modelling repeated auctions in
the Real Time Bidding (RTB) ecosystem using point processes. The flexibility of
the framework allows a variety of auction scenarios including configuration of
information provided to player, determination of auction winner and
quantification of utility gained from each auctions. We propose theoretical
results on how this formulation of process can be approximated to a Poisson
point process, which enables the analyzer to take advantage of well-established
properties. Under this framework, we specify the player's optimal strategy
under various scenarios. We also emphasize that it is critical to consider the
joint distribution of utility and market condition instead of estimating the
marginal distributions independently.
Related papers
- Fair Allocation in Dynamic Mechanism Design [57.66441610380448]
We consider a problem where an auctioneer sells an indivisible good to groups of buyers in every round, for a total of $T$ rounds.
The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group.
arXiv Detail & Related papers (2024-05-31T19:26:05Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
We present a minimax lower bound on the discounted mean estimation problem.
We show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties.
arXiv Detail & Related papers (2023-04-11T09:13:17Z) - Robust multi-item auction design using statistical learning: Overcoming
uncertainty in bidders' types distributions [6.5920927560926295]
Our proposed approach utilizes nonparametric density estimation to accurately estimate bidders' types from historical bids.
To further enhance efficiency of our mechanism, we introduce two novel strategies for query reduction.
Simulation experiments conducted on both small-scale and large-scale data demonstrate that our mechanism consistently outperforms existing methods in terms of revenue design and query reduction.
arXiv Detail & Related papers (2023-02-02T08:32:55Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
We construct realistic spot and equity option market simulators for a single underlying on the basis of normalizing flows.
We leverage the conditional invertibility property of normalizing flows and introduce a scalable method to calibrate the joint distribution of a set of independent simulators.
arXiv Detail & Related papers (2021-12-13T17:34:28Z) - GFlowNet Foundations [66.69854262276391]
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context.
We show a number of additional theoretical properties of GFlowNets.
arXiv Detail & Related papers (2021-11-17T17:59:54Z) - LSB: Local Self-Balancing MCMC in Discrete Spaces [2.385916960125935]
This work considers using machine learning to adapt the proposal distribution to the target, in order to improve the sampling efficiency in the purely discrete domain.
We call the resulting sampler as the Locally Self-Balancing Sampler (LSB)
arXiv Detail & Related papers (2021-09-08T18:31:26Z) - Scalable and Interpretable Marked Point Processes [5.070542698701158]
We introduce a novel inferential framework for marked point processes that enjoys both scalability and interpretability.
The framework is based on variational inference and it aims to speed up inference for a flexible family of marked point processes.
arXiv Detail & Related papers (2021-05-30T15:37:57Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - Probabilistic multivariate electricity price forecasting using implicit
generative ensemble post-processing [0.0]
We use a likelihood-free implicit generative model based on an ensemble of point forecasting models to generate multivariate electricity price scenarios.
Our ensemble post-processing method outperforms well-established model combination benchmarks.
As our method works on top of an ensemble of domain-specific expert models, it can readily be deployed to other forecasting tasks.
arXiv Detail & Related papers (2020-05-27T15:22:10Z) - Optimal Bidding Strategy without Exploration in Real-time Bidding [14.035270361462576]
maximizing utility with a budget constraint is the primary goal for advertisers in real-time bidding (RTB) systems.
Previous works ignore the losing auctions to alleviate the difficulty with censored states.
We propose a novel practical framework using the maximum entropy principle to imitate the behavior of the true distribution observed in real-time traffic.
arXiv Detail & Related papers (2020-03-31T20:43:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.