Quantum Key Distribution using Expectation Values of Super-classical GHZ
States
- URL: http://arxiv.org/abs/2308.09194v1
- Date: Thu, 17 Aug 2023 21:40:21 GMT
- Title: Quantum Key Distribution using Expectation Values of Super-classical GHZ
States
- Authors: Hyung S. Choi, Ye Jin Han, Collin Kessinger, Qiaoren Wang
- Abstract summary: We propose a new quantum key distribution scheme that is based on the optimum expectation values of maximally entangled Greenberger-Horne-Zeilinger states.
Our protocol makes use of the degrees of freedom in continuously variable angles, thereby increasing the security of the key distribution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new quantum key distribution scheme that is based on the optimum
expectation values of maximally entangled Greenberger-Horne-Zeilinger states.
Our protocol makes use of the degrees of freedom in continuously variable
angles, thereby increasing the security of the key distribution. Outlined are
two protocols that distribute a key from Alice to Bob using the above idea,
followed by an extension that allows for the same key to be shared with
Charlie. We show how this scheme provides for certain detection of any
eavesdropper through absolute violation rather than the probabilistic violation
used in many protocols.
Related papers
- Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.
We derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Improved finite-size key rates for discrete-modulated continuous variable quantum key distribution under coherent attacks [0.0]
We consider a prepare-and-measure CVQKD protocol, where Alice chooses from a set of four coherent states and Bob performs a heterodyne measurement.
We provide a security proof against coherent attacks in the finite-size regime, and compute the achievable key rate.
arXiv Detail & Related papers (2024-07-03T13:18:31Z) - Decoherence-assisted quantum key distribution [37.69303106863453]
We show that our method reduces the amount of information that an eavesdropper can obtain in the BB84 protocol under the entangling probe attack.
We demonstrate experimentally that Alice and Bob can agree on a scheme to that gives low values of the quantum bit error rate.
arXiv Detail & Related papers (2024-05-30T15:28:07Z) - Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - Improved Semi-Quantum Key Distribution with Two Almost-Classical Users [1.827510863075184]
We revisit a mediated semi-quantum key distribution protocol introduced by Massa et al.
We show how this protocol may be extended to improve its efficiency and also its noise tolerance.
We evaluate the protocol's performance in a variety of lossy and noisy channels.
arXiv Detail & Related papers (2022-03-20T14:41:14Z) - Coherent one-way quantum conference key agreement based on twin field [9.369069713000165]
Quantum conference key agreement (CKA) enables key sharing among trusted users with information-theoretic security.
We propose a quantum CKA protocol of three users.
Exploiting coherent states with intensity 0 and $mu$ to encode logic bits, our protocol can break the limit.
arXiv Detail & Related papers (2021-09-06T03:53:08Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.