Efficient source-independent quantum conference key agreement
- URL: http://arxiv.org/abs/2406.17267v1
- Date: Tue, 25 Jun 2024 04:24:06 GMT
- Title: Efficient source-independent quantum conference key agreement
- Authors: Yu Bao, Yi-Ran Xiao, Yu-Chen Song, Yao Fu, Xiao-Yu Cao, Hua-Lei Yin, Zeng-Bing Chen,
- Abstract summary: Quantum conference key agreement (QCKA) enables the unconditional secure distribution of conference keys among multiple participants.
We propose a source-independent QCKA scheme utilizing the post-matching method.
We introduce an equivalent distributing virtual multi-photon entanglement protocol for providing the unconditional security proof.
- Score: 25.617190829449893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum conference key agreement (QCKA) enables the unconditional secure distribution of conference keys among multiple participants. Due to challenges in high-fidelity preparation and long-distance distribution of multi-photon entanglement, entanglement-based QCKA is facing severe limitations in both key rate and scalability. Here, we propose a source-independent QCKA scheme utilizing the post-matching method, feasible within the entangled photon pair distribution network. We introduce an equivalent distributing virtual multi-photon entanglement protocol for providing the unconditional security proof even in the case of coherent attacks. For the symmetry star-network, comparing with previous $n$-photon entanglement protocol, the conference key rate is improved from $O(\eta^{n})$ to $O(\eta^{2})$, where $\eta$ is the transmittance from the entanglement source to one participant. Simulation results show that the performance of our protocol has multiple orders of magnitude advantages in the intercity distance. We anticipate that our approach will demonstrate its potential in the implementation of quantum networks.
Related papers
- Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.
We derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Source-independent quantum secret sharing with entangled photon pair networks [15.3505990843415]
We present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks.
Our protocol has great performance and technical advantages in future quantum networks.
arXiv Detail & Related papers (2024-07-23T13:24:28Z) - Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Finite-key Analysis for Quantum Conference Key Agreement with Asymmetric
Channels [12.576252829963096]
Quantum conference key agreement (QCKA) provides unconditional secret keys among multiple parties.
Some QCKA protocols employing twin-field was proposed to promote transmission distance.
Here, we consider a tripartite QCKA protocol utilizing the idea of sending-or-not-sending twin-field scheme.
arXiv Detail & Related papers (2021-09-23T06:36:31Z) - Phase-Matching Quantum Cryptographic Conferencing [10.15251318968606]
We report a QCC protocol based on weak coherent state interferences named phase-matching quantum cryptographic conferencing.
The proposed protocol can improve the key generation rate from $mathrmO(etaN)$ to $mathrmO(etaN-1)$ compared with the measurement device independent QCC protocols.
arXiv Detail & Related papers (2020-06-24T03:26:00Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.