A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings
- URL: http://arxiv.org/abs/2308.09202v1
- Date: Thu, 17 Aug 2023 22:40:59 GMT
- Title: A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings
- Authors: Amit Kumar Jaiswal, Yu Xiong
- Abstract summary: Interest-aware Capsule network (IaCN) is a model-agnostic framework that directly learns interest-oriented item representations.
IaCN serves as an auxiliary task, enabling the joint learning of both item-based and interest-based representations.
We evaluate the proposed approach on benchmark datasets, exploring various scenarios involving different deep neural networks.
- Score: 4.989653738257287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Item representation holds significant importance in recommendation systems,
which encompasses domains such as news, retail, and videos. Retrieval and
ranking models utilise item representation to capture the user-item
relationship based on user behaviours. While existing representation learning
methods primarily focus on optimising item-based mechanisms, such as attention
and sequential modelling. However, these methods lack a modelling mechanism to
directly reflect user interests within the learned item representations.
Consequently, these methods may be less effective in capturing user interests
indirectly. To address this challenge, we propose a novel Interest-aware
Capsule network (IaCN) recommendation model, a model-agnostic framework that
directly learns interest-oriented item representations. IaCN serves as an
auxiliary task, enabling the joint learning of both item-based and
interest-based representations. This framework adopts existing recommendation
models without requiring substantial redesign. We evaluate the proposed
approach on benchmark datasets, exploring various scenarios involving different
deep neural networks, behaviour sequence lengths, and joint learning ratios of
interest-oriented item representations. Experimental results demonstrate
significant performance enhancements across diverse recommendation models,
validating the effectiveness of our approach.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Efficient Human-in-the-loop System for Guiding DNNs Attention [25.501443892795614]
We propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to the regions specified by users.
Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems.
arXiv Detail & Related papers (2022-06-13T09:04:32Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
We present a novel universal sequence representation learning approach, named UniSRec.
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way.
arXiv Detail & Related papers (2022-06-13T07:21:56Z) - Multiple Interest and Fine Granularity Network for User Modeling [3.508126539399186]
User modeling plays a fundamental role in industrial recommender systems, either in the matching stage and the ranking stage, in terms of both the customer experience and business revenue.
Most existing deep-learning based approaches exploit item-ids and category-ids but neglect fine-grained features like color and mate-rial, which hinders modeling the fine granularity of users' interests.
We present Multiple interest and Fine granularity Net-work (MFN), which tackle users' multiple and fine-grained interests and construct the model from both the similarity relationship and the combination relationship among the users' multiple interests.
arXiv Detail & Related papers (2021-12-05T15:12:08Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Denoising User-aware Memory Network for Recommendation [11.145186013006375]
We propose a novel CTR model named denoising user-aware memory network (DUMN)
DUMN uses the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback.
Experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2021-07-12T14:39:36Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - Represent Items by Items: An Enhanced Representation of the Target Item
for Recommendation [37.28220632871373]
Item-based collaborative filtering (ICF) has been widely used in industrial applications such as recommender system and online advertising.
Recent models use methods such as attention mechanism and deep neural network to learn the user representation and scoring function more accurately.
We propose an enhanced representation of the target item which distills relevant information from the co-occurrence items.
arXiv Detail & Related papers (2021-04-26T11:28:28Z) - Learning User Representations with Hypercuboids for Recommender Systems [26.80987554753327]
Our model explicitly models user interests as a hypercuboid instead of a point in the space.
We present two variants of hypercuboids to enhance the capability in capturing the diversities of user interests.
A neural architecture is also proposed to facilitate user hypercuboid learning by capturing the activity sequences (e.g., buy and rate) of users.
arXiv Detail & Related papers (2020-11-11T12:50:00Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.