Efficient Human-in-the-loop System for Guiding DNNs Attention
- URL: http://arxiv.org/abs/2206.05981v2
- Date: Tue, 14 Jun 2022 07:53:49 GMT
- Title: Efficient Human-in-the-loop System for Guiding DNNs Attention
- Authors: Yi He, Xi Yang, Chia-Ming Chang, Haoran Xie, Takeo Igarashi
- Abstract summary: We propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to the regions specified by users.
Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems.
- Score: 25.501443892795614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attention guidance is an approach to addressing dataset bias in deep
learning, where the model relies on incorrect features to make decisions.
Focusing on image classification tasks, we propose an efficient
human-in-the-loop system to interactively direct the attention of classifiers
to the regions specified by users, thereby reducing the influence of
co-occurrence bias and improving the transferability and interpretability of a
DNN. Previous approaches for attention guidance require the preparation of
pixel-level annotations and are not designed as interactive systems. We present
a new interactive method to allow users to annotate images with simple clicks,
and study a novel active learning strategy to significantly reduce the number
of annotations. We conducted both a numerical evaluation and a user study to
evaluate the proposed system on multiple datasets. Compared to the existing
non-active-learning approach which usually relies on huge amounts of
polygon-based segmentation masks to fine-tune or train the DNNs, our system can
save lots of labor and money and obtain a fine-tuned network that works better
even when the dataset is biased. The experiment results indicate that the
proposed system is efficient, reasonable, and reliable.
Related papers
- Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - Partition-Based Active Learning for Graph Neural Networks [17.386869902409153]
We study the problem of semi-supervised learning with Graph Neural Networks (GNNs) in an active learning setup.
We propose GraphPart, a novel partition-based active learning approach for GNNs.
arXiv Detail & Related papers (2022-01-23T22:51:14Z) - Improving Prediction Confidence in Learning-Enabled Autonomous Systems [2.66512000865131]
We utilize a feedback loop between learning-enabled components used for classification and the sensors of an autonomous system in order to improve the confidence of the predictions.
We design a classifier using Inductive Conformal Prediction (ICP) based on a triplet network architecture in order to learn representations that can be used to quantify the similarity between test and training examples.
A feedback loop that queries the sensors for a new input is used to further refine the predictions and increase the classification accuracy.
arXiv Detail & Related papers (2021-10-07T00:40:34Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Improved Representation Learning for Session-based Recommendation [0.0]
Session-based recommendation systems suggest relevant items to users by modeling user behavior and preferences using short-term anonymous sessions.
Existing methods leverage Graph Neural Networks (GNNs) that propagate and aggregate information from neighboring nodes.
We propose using a Transformer in combination with a target attentive GNN, which allows richer Representation Learning.
arXiv Detail & Related papers (2021-07-04T00:57:28Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
We propose a novel Hierarchical and Efficient Network (HENet) that learns hierarchical global, partial, and recovery features ensemble under the supervision of multiple loss combinations.
We also propose a new dataset augmentation approach, dubbed Random Polygon Erasing (RPE), to random erase irregular area of the input image for imitating the body part missing.
arXiv Detail & Related papers (2020-05-18T15:45:25Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.