CCFace: Classification Consistency for Low-Resolution Face Recognition
- URL: http://arxiv.org/abs/2308.09230v1
- Date: Fri, 18 Aug 2023 01:24:52 GMT
- Title: CCFace: Classification Consistency for Low-Resolution Face Recognition
- Authors: Mohammad Saeed Ebrahimi Saadabadi, Sahar Rahimi Malakshan, Hossein
Kashiani, Nasser M. Nasrabadi
- Abstract summary: Deep face recognition methods have shown a significant decline in performance when applied to real-world low-resolution benchmarks like TinyFace or SCFace.
We propose a novel classification consistency knowledge distillation approach that transfers the learned classifier from a high-resolution model to a low-resolution network.
Our proposed method outperforms state-of-the-art approaches on low-resolution benchmarks, with a three percent improvement on TinyFace while maintaining performance on high-resolution benchmarks.
- Score: 12.129404936688752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep face recognition methods have demonstrated impressive
results on in-the-wild datasets. However, these methods have shown a
significant decline in performance when applied to real-world low-resolution
benchmarks like TinyFace or SCFace. To address this challenge, we propose a
novel classification consistency knowledge distillation approach that transfers
the learned classifier from a high-resolution model to a low-resolution
network. This approach helps in finding discriminative representations for
low-resolution instances. To further improve the performance, we designed a
knowledge distillation loss using the adaptive angular penalty inspired by the
success of the popular angular margin loss function. The adaptive penalty
reduces overfitting on low-resolution samples and alleviates the convergence
issue of the model integrated with data augmentation. Additionally, we utilize
an asymmetric cross-resolution learning approach based on the state-of-the-art
semi-supervised representation learning paradigm to improve discriminability on
low-resolution instances and prevent them from forming a cluster. Our proposed
method outperforms state-of-the-art approaches on low-resolution benchmarks,
with a three percent improvement on TinyFace while maintaining performance on
high-resolution benchmarks.
Related papers
- Looking for Tiny Defects via Forward-Backward Feature Transfer [12.442574943138794]
We introduce a novel benchmark that evaluates methods on the original, high-resolution image and ground-truth masks.
Our benchmark includes a metric that captures robustness with respect to defect size.
Our proposal features the highest robustness to defect size, runs at the fastest speed and yields state-of-the-art segmentation performance.
arXiv Detail & Related papers (2024-07-04T17:59:26Z) - Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DML aims to learn a discriminative high-dimensional embedding space for downstream tasks like classification, clustering, and retrieval.
To maintain the structure of embedding space and avoid feature collapse, we propose a novel loss function called Anti-Collapse Loss.
Comprehensive experiments on benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-07-03T13:44:20Z) - Gradient constrained sharpness-aware prompt learning for vision-language
models [99.74832984957025]
This paper targets a novel trade-off problem in generalizable prompt learning for vision-language models (VLM)
By analyzing the loss landscapes of the state-of-the-art method and vanilla Sharpness-aware Minimization (SAM) based method, we conclude that the trade-off performance correlates to both loss value and loss sharpness.
We propose a novel SAM-based method for prompt learning, denoted as Gradient Constrained Sharpness-aware Context Optimization (GCSCoOp)
arXiv Detail & Related papers (2023-09-14T17:13:54Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Cross-resolution Face Recognition via Identity-Preserving Network and
Knowledge Distillation [12.090322373964124]
Cross-resolution face recognition is a challenging problem for modern deep face recognition systems.
This paper proposes a new approach that enforces the network to focus on the discriminative information stored in the low-frequency components of a low-resolution image.
arXiv Detail & Related papers (2023-03-15T14:52:46Z) - Dive into the Resolution Augmentations and Metrics in Low Resolution
Face Recognition: A Plain yet Effective New Baseline [33.82038623492457]
We deal with the huge domain gap between High Resolution (HR) and Low Resolution (LR) domains.
We propose a more effective Multi-Resolution Augmentation and a novel metric loss based on a LogExp distance function.
Our method could learn more general knowledge in a wide resolution range of images and balanced results can be achieved by our framework.
arXiv Detail & Related papers (2023-02-11T07:31:47Z) - Octuplet Loss: Make Face Recognition Robust to Image Resolution [5.257115841810258]
We propose a novel combination of the popular triplet loss to improve robustness against image resolution.
We leverage the relationship between high-resolution images and their synthetically down-sampled variants jointly with their identity labels.
Fine-tuning several state-of-the-art approaches with our method proves that we can significantly boost performance for cross-resolution (high-to-low resolution) face verification.
arXiv Detail & Related papers (2022-07-14T08:22:58Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z) - Feature Super-Resolution Based Facial Expression Recognition for
Multi-scale Low-Resolution Faces [7.634398926381845]
Super-resolution method is often used to enhance low-resolution images, but the performance on FER task is limited when on images of very low resolution.
In this work, inspired by feature super-resolution methods for object detection, we proposed a novel generative adversary network-based super-resolution method for robust facial expression recognition.
arXiv Detail & Related papers (2020-04-05T15:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.