論文の概要: CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2308.09296v4
- Date: Thu, 8 Aug 2024 03:06:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 21:09:27.654797
- Title: CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection
- Title(参考訳): CARLA:時系列異常検出のための自己教師付きコントラスト表現学習
- Authors: Zahra Zamanzadeh Darban, Geoffrey I. Webb, Shirui Pan, Charu C. Aggarwal, Mahsa Salehi,
- Abstract要約: 時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
- 参考スコア(独自算出の注目度): 53.83593870825628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios. Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner. The normal boundary is often defined tightly, resulting in slight deviations being classified as anomalies, consequently leading to a high false positive rate and a limited ability to generalise normal patterns. To address this, we introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series Anomaly detection (CARLA). While existing contrastive learning methods assume that augmented time series windows are positive samples and temporally distant windows are negative samples, we argue that these assumptions are limited as augmentation of time series can transform them to negative samples, and a temporally distant window can represent a positive sample. Our contrastive approach leverages existing generic knowledge about time series anomalies and injects various types of anomalies as negative samples. Therefore, CARLA not only learns normal behaviour but also learns deviations indicating anomalies. It creates similar representations for temporally closed windows and distinct ones for anomalies. Additionally, it leverages the information about representations' neighbours through a self-supervised approach to classify windows based on their nearest/furthest neighbours to further enhance the performance of anomaly detection. In extensive tests on seven major real-world time series anomaly detection datasets, CARLA shows superior performance over state-of-the-art self-supervised and unsupervised TSAD methods. Our research shows the potential of contrastive representation learning to advance time series anomaly detection.
- Abstract(参考訳): 時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
通常の境界はしばしば厳密に定義され、わずかな偏差は異常に分類され、結果として偽陽性率が高く、通常のパターンを一般化する能力が制限される。
そこで本研究では,時系列異常検出(CARLA)のための,エンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
既存のコントラスト学習手法では、拡張時系列ウィンドウは正のサンプルであり、時間的に離れたウィンドウは負のサンプルであると仮定しているが、これらの仮定は、時系列の増大がそれらを負のサンプルに変換し、時間的に離れたウィンドウは正のサンプルを表すことができるため、制限されている。
我々の対照的なアプローチは、時系列異常に関する既存の一般的な知識を活用し、様々な種類の異常を負のサンプルとして注入する。
したがって、CARLAは正常な振る舞いを学ぶだけでなく、異常を示す偏差も学ぶ。
時間的に閉じたウィンドウと、異常の異なるウィンドウに類似した表現を生成する。
さらに、最寄り/最寄りの隣人に基づいてウィンドウを分類する自己教師型アプローチにより、表現の隣人に関する情報を活用し、異常検出の性能をさらに向上させる。
CARLAは、7つの主要な実世界の時系列異常検出データセットの広範なテストにおいて、最先端の自己監督的かつ教師なしのTSAD法よりも優れた性能を示す。
本研究は,時系列異常検出におけるコントラスト表現学習の可能性を示す。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
本稿では,新しいタイプの異常検出法であるPrecursor-of-Anomaly(PoA)について述べる。
両問題を同時に解くために,ニューラルネットワークとマルチタスク学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-27T14:10:09Z) - DCdetector: Dual Attention Contrastive Representation Learning for Time
Series Anomaly Detection [26.042898544127503]
時系列異常検出は幅広い用途において重要である。
時系列の通常のサンプル分布から逸脱したサンプルを識別することを目的としている。
マルチスケールな二重注意コントラスト表現学習モデルであるDCdetectorを提案する。
論文 参考訳(メタデータ) (2023-06-17T13:40:15Z) - Deep Contrastive One-Class Time Series Anomaly Detection [15.27593816198766]
時系列の逆1クラス異常検出法(COCA)を著者らにより提案する。
元の表現と再構成された表現を、正対の負サンプルのないCL、すなわち「シーケンスコントラスト」として扱う。
論文 参考訳(メタデータ) (2022-07-04T15:08:06Z) - Anomaly Transformer: Time Series Anomaly Detection with Association
Discrepancy [68.86835407617778]
Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する。
Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-10-06T10:33:55Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。