Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
- URL: http://arxiv.org/abs/2308.09369v1
- Date: Fri, 18 Aug 2023 08:06:18 GMT
- Title: Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
- Authors: Suresh Guttikonda and Jason Rambach
- Abstract summary: We propose a transformer-based cross-modal fusion architecture to bridge the gap between multi-modal fusion and omnidirectional scene perception.
We employ distortion-aware modules to address extreme object deformations and panorama distortions.
Our technique achieved state-of-the-art mIoU performance: 60.60% on Stanford2D3DS (RGB-HHA), 71.97% Structured3D (RGB-D-N), and 35.92% Matterport3D (RGB-D)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the research community has shown a lot of interest to
panoramic images that offer a 360-degree directional perspective. Multiple data
modalities can be fed, and complimentary characteristics can be utilized for
more robust and rich scene interpretation based on semantic segmentation, to
fully realize the potential. Existing research, however, mostly concentrated on
pinhole RGB-X semantic segmentation. In this study, we propose a
transformer-based cross-modal fusion architecture to bridge the gap between
multi-modal fusion and omnidirectional scene perception. We employ
distortion-aware modules to address extreme object deformations and panorama
distortions that result from equirectangular representation. Additionally, we
conduct cross-modal interactions for feature rectification and information
exchange before merging the features in order to communicate long-range
contexts for bi-modal and tri-modal feature streams. In thorough tests using
combinations of four different modality types in three indoor panoramic-view
datasets, our technique achieved state-of-the-art mIoU performance: 60.60% on
Stanford2D3DS (RGB-HHA), 71.97% Structured3D (RGB-D-N), and 35.92% Matterport3D
(RGB-D). We plan to release all codes and trained models soon.
Related papers
- FGU3R: Fine-Grained Fusion via Unified 3D Representation for Multimodal 3D Object Detection [10.070120335536075]
Multimodal 3D object detection has garnered considerable interest in autonomous driving.
However, multimodal detectors suffer from dimension mismatches that derive from fusing 3D points with 2D pixels coarsely.
We propose a multimodal framework FGU3R to tackle the issue via unified 3D representation and fine-grained fusion.
arXiv Detail & Related papers (2025-01-08T09:26:36Z) - PoIFusion: Multi-Modal 3D Object Detection via Fusion at Points of Interest [65.48057241587398]
PoIFusion is a framework to fuse information of RGB images and LiDAR point clouds at the points of interest (PoIs)
Our approach maintains the view of each modality and obtains multi-modal features by computation-friendly projection and computation.
We conducted extensive experiments on nuScenes and Argoverse2 datasets to evaluate our approach.
arXiv Detail & Related papers (2024-03-14T09:28:12Z) - SM$^3$: Self-Supervised Multi-task Modeling with Multi-view 2D Images
for Articulated Objects [24.737865259695006]
We propose a self-supervised interaction perception method, referred to as SM$3$, to model articulated objects.
By constructing 3D geometries and textures from the captured 2D images, SM$3$ achieves integrated optimization of movable part and joint parameters.
Evaluations demonstrate that SM$3$ surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.
arXiv Detail & Related papers (2024-01-17T11:15:09Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
We present an efficient multi-modal backbone for outdoor 3D perception named UniTR.
UniTR processes a variety of modalities with unified modeling and shared parameters.
UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks.
arXiv Detail & Related papers (2023-08-15T12:13:44Z) - MSeg3D: Multi-modal 3D Semantic Segmentation for Autonomous Driving [15.36416000750147]
We propose a multi-modal 3D semantic segmentation model (MSeg3D) with joint intra-modal feature extraction and inter-modal feature fusion.
MSeg3D still shows robustness and improves the LiDAR-only baseline.
arXiv Detail & Related papers (2023-03-15T13:13:03Z) - PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D
Object Detection [26.03582038710992]
Masked Autoencoders learn strong visual representations and achieve state-of-the-art results in several independent modalities.
In this work, we focus on point cloud and RGB image data, two modalities that are often presented together in the real world.
We propose PiMAE, a self-supervised pre-training framework that promotes 3D and 2D interaction through three aspects.
arXiv Detail & Related papers (2023-03-14T17:58:03Z) - Multi-Projection Fusion and Refinement Network for Salient Object
Detection in 360{\deg} Omnidirectional Image [141.10227079090419]
We propose a Multi-Projection Fusion and Refinement Network (MPFR-Net) to detect the salient objects in 360deg omnidirectional image.
MPFR-Net uses the equirectangular projection image and four corresponding cube-unfolding images as inputs.
Experimental results on two omnidirectional datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-12-23T14:50:40Z) - Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object
Detection [16.198358858773258]
Multi-modal 3D object detection has been an active research topic in autonomous driving.
It is non-trivial to explore the cross-modal feature fusion between sparse 3D points and dense 2D pixels.
Recent approaches either fuse the image features with the point cloud features that are projected onto the 2D image plane or combine the sparse point cloud with dense image pixels.
arXiv Detail & Related papers (2022-10-18T06:15:56Z) - Unifying Voxel-based Representation with Transformer for 3D Object
Detection [143.91910747605107]
We present a unified framework for multi-modality 3D object detection, named UVTR.
The proposed method aims to unify multi-modality representations in the voxel space for accurate and robust single- or cross-modality 3D detection.
UVTR achieves leading performance in the nuScenes test set with 69.7%, 55.1%, and 71.1% NDS for LiDAR, camera, and multi-modality inputs, respectively.
arXiv Detail & Related papers (2022-06-01T17:02:40Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving.
We develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods.
arXiv Detail & Related papers (2022-03-15T18:46:06Z) - Multi-Scale Iterative Refinement Network for RGB-D Salient Object
Detection [7.062058947498447]
salient visual cues appear in various scales and resolutions of RGB images due to semantic gaps at different feature levels.
Similar salient patterns are available in cross-modal depth images as well as multi-scale versions.
We devise attention based fusion module (ABF) to address on cross-modal correlation.
arXiv Detail & Related papers (2022-01-24T10:33:00Z) - End-to-end Multi-modal Video Temporal Grounding [105.36814858748285]
We propose a multi-modal framework to extract complementary information from videos.
We adopt RGB images for appearance, optical flow for motion, and depth maps for image structure.
We conduct experiments on the Charades-STA and ActivityNet Captions datasets, and show that the proposed method performs favorably against state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-12T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.