End-to-end Multi-modal Video Temporal Grounding
- URL: http://arxiv.org/abs/2107.05624v1
- Date: Mon, 12 Jul 2021 17:58:10 GMT
- Title: End-to-end Multi-modal Video Temporal Grounding
- Authors: Yi-Wen Chen, Yi-Hsuan Tsai, Ming-Hsuan Yang
- Abstract summary: We propose a multi-modal framework to extract complementary information from videos.
We adopt RGB images for appearance, optical flow for motion, and depth maps for image structure.
We conduct experiments on the Charades-STA and ActivityNet Captions datasets, and show that the proposed method performs favorably against state-of-the-art approaches.
- Score: 105.36814858748285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of text-guided video temporal grounding, which aims to
identify the time interval of certain event based on a natural language
description. Different from most existing methods that only consider RGB images
as visual features, we propose a multi-modal framework to extract complementary
information from videos. Specifically, we adopt RGB images for appearance,
optical flow for motion, and depth maps for image structure. While RGB images
provide abundant visual cues of certain event, the performance may be affected
by background clutters. Therefore, we use optical flow to focus on large motion
and depth maps to infer the scene configuration when the action is related to
objects recognizable with their shapes. To integrate the three modalities more
effectively and enable inter-modal learning, we design a dynamic fusion scheme
with transformers to model the interactions between modalities. Furthermore, we
apply intra-modal self-supervised learning to enhance feature representations
across videos for each modality, which also facilitates multi-modal learning.
We conduct extensive experiments on the Charades-STA and ActivityNet Captions
datasets, and show that the proposed method performs favorably against
state-of-the-art approaches.
Related papers
- Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Modeling Motion with Multi-Modal Features for Text-Based Video
Segmentation [56.41614987789537]
Text-based video segmentation aims to segment the target object in a video based on a describing sentence.
We propose a method to fuse and align appearance, motion, and linguistic features to achieve accurate segmentation.
arXiv Detail & Related papers (2022-04-06T02:42:33Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Visual Spatio-temporal Relation-enhanced Network for Cross-modal
Text-Video Retrieval [17.443195531553474]
Cross-modal retrieval of texts and videos aims to understand the correspondence between vision and language.
We propose a Visual S-temporal Relation-enhanced semantic network (CNN-SRNet), a cross-temporal retrieval framework.
Experiments are conducted on both MSR-VTT and MSVD datasets.
arXiv Detail & Related papers (2021-10-29T08:23:40Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - Neural Radiance Flow for 4D View Synthesis and Video Processing [59.9116932930108]
We present a method to learn a 4D spatial-temporal representation of a dynamic scene from a set of RGB images.
Key to our approach is the use of a neural implicit representation that learns to capture the 3D occupancy, radiance, and dynamics of the scene.
arXiv Detail & Related papers (2020-12-17T17:54:32Z) - OVC-Net: Object-Oriented Video Captioning with Temporal Graph and Detail
Enhancement [44.228748086927375]
We introduce the video-based object-oriented video captioning network (OVC)-Net via temporal graph and detail enhancement.
To demonstrate the effectiveness, we conduct experiments on the new dataset and compare it with the state-of-the-art video captioning methods.
arXiv Detail & Related papers (2020-03-08T04:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.