Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review
- URL: http://arxiv.org/abs/2308.09380v1
- Date: Fri, 18 Aug 2023 08:23:47 GMT
- Title: Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review
- Authors: Yun Xin Teoh, Alice Othmani, Siew Li Goh, Juliana Usman, Khin Wee Lai
- Abstract summary: Existing artificial intelligence models for diagnosing knee osteoarthritis (OA) have faced criticism for their lack of transparency and interpretability.
Recently, explainable artificial intelligence (XAI) has emerged as a specialized technique that can provide confidence in the model's prediction.
This paper presents the first survey of XAI techniques used for knee OA diagnosis.
- Score: 4.918419052486409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing artificial intelligence (AI) models for diagnosing knee
osteoarthritis (OA) have faced criticism for their lack of transparency and
interpretability, despite achieving medical-expert-like performance. This
opacity makes them challenging to trust in clinical practice. Recently,
explainable artificial intelligence (XAI) has emerged as a specialized
technique that can provide confidence in the model's prediction by revealing
how the prediction is derived, thus promoting the use of AI systems in
healthcare. This paper presents the first survey of XAI techniques used for
knee OA diagnosis. The XAI techniques are discussed from two perspectives: data
interpretability and model interpretability. The aim of this paper is to
provide valuable insights into XAI's potential towards a more reliable knee OA
diagnosis approach and encourage its adoption in clinical practice.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI.
As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis.
This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare.
arXiv Detail & Related papers (2024-03-23T02:15:23Z) - Evaluation of Popular XAI Applied to Clinical Prediction Models: Can
They be Trusted? [2.0089256058364358]
The absence of transparency and explainability hinders the clinical adoption of Machine learning (ML) algorithms.
This study evaluates two popular XAI methods used for explaining predictive models in the healthcare context.
arXiv Detail & Related papers (2023-06-21T02:29:30Z) - XAI Renaissance: Redefining Interpretability in Medical Diagnostic
Models [0.0]
The XAI Renaissance aims to redefine the interpretability of medical diagnostic models.
XAI techniques empower healthcare professionals to understand, trust, and effectively utilize these models for accurate and reliable medical diagnoses.
arXiv Detail & Related papers (2023-06-02T16:42:20Z) - Dermatologist-like explainable AI enhances trust and confidence in
diagnosing melanoma [0.0]
A lack of transparency in how artificial intelligence systems identify melanoma poses severe obstacles to user acceptance.
Most XAI methods are unable to produce precisely located domain-specific explanations, making the explanations difficult to interpret.
We developed an XAI system that produces text and region based explanations that are easily interpretable by dermatologists.
arXiv Detail & Related papers (2023-03-17T17:25:55Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
In clinical practice such models must not only be accurate, but provide doctors with interpretable and helpful results.
We introduce ProtoPatient, a novel method based on prototypical networks and label-wise attention.
We evaluate the model on two publicly available clinical datasets and show that it outperforms existing baselines.
arXiv Detail & Related papers (2022-10-16T10:12:07Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.