XAI Renaissance: Redefining Interpretability in Medical Diagnostic
Models
- URL: http://arxiv.org/abs/2306.01668v1
- Date: Fri, 2 Jun 2023 16:42:20 GMT
- Title: XAI Renaissance: Redefining Interpretability in Medical Diagnostic
Models
- Authors: Sujith K Mandala
- Abstract summary: The XAI Renaissance aims to redefine the interpretability of medical diagnostic models.
XAI techniques empower healthcare professionals to understand, trust, and effectively utilize these models for accurate and reliable medical diagnoses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning models become increasingly prevalent in medical
diagnostics, the need for interpretability and transparency becomes paramount.
The XAI Renaissance signifies a significant shift in the field, aiming to
redefine the interpretability of medical diagnostic models. This paper explores
the innovative approaches and methodologies within the realm of Explainable AI
(XAI) that are revolutionizing the interpretability of medical diagnostic
models. By shedding light on the underlying decision-making process, XAI
techniques empower healthcare professionals to understand, trust, and
effectively utilize these models for accurate and reliable medical diagnoses.
This review highlights the key advancements in XAI for medical diagnostics and
their potential to transform the healthcare landscape, ultimately improving
patient outcomes and fostering trust in AI-driven diagnostic systems.
Related papers
- The Role of Explainable AI in Revolutionizing Human Health Monitoring [0.0]
Explainable AI (XAI) offers greater clarity and has the potential to significantly improve patient care.
This literature review focuses on chronic conditions such as Parkinson's, stroke, depression, cancer, heart disease, and Alzheimer's disease.
The article is concluded with a critical appraisal of the challenges and future research opportunities for XAI in human health monitoring.
arXiv Detail & Related papers (2024-09-11T15:31:40Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [52.90397538472582]
SkinGEN is a diagnosis-to-generation framework that generates reference demonstrations from diagnosis results provided by VLM.
We conduct a user study with 32 participants evaluating both the system performance and explainability.
Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process.
arXiv Detail & Related papers (2024-04-23T05:36:33Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI.
As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis.
This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare.
arXiv Detail & Related papers (2024-03-23T02:15:23Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review [4.918419052486409]
Existing artificial intelligence models for diagnosing knee osteoarthritis (OA) have faced criticism for their lack of transparency and interpretability.
Recently, explainable artificial intelligence (XAI) has emerged as a specialized technique that can provide confidence in the model's prediction.
This paper presents the first survey of XAI techniques used for knee OA diagnosis.
arXiv Detail & Related papers (2023-08-18T08:23:47Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Dermatologist-like explainable AI enhances trust and confidence in
diagnosing melanoma [0.0]
A lack of transparency in how artificial intelligence systems identify melanoma poses severe obstacles to user acceptance.
Most XAI methods are unable to produce precisely located domain-specific explanations, making the explanations difficult to interpret.
We developed an XAI system that produces text and region based explanations that are easily interpretable by dermatologists.
arXiv Detail & Related papers (2023-03-17T17:25:55Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.