Learnt Contrastive Concept Embeddings for Sign Recognition
- URL: http://arxiv.org/abs/2308.09515v1
- Date: Fri, 18 Aug 2023 12:47:18 GMT
- Title: Learnt Contrastive Concept Embeddings for Sign Recognition
- Authors: Ryan Wong, Necati Cihan Camgoz, Richard Bowden
- Abstract summary: We focus on explicitly creating sign embeddings that bridge the gap between sign language and spoken language.
We train a vocabulary of embeddings that are based on the linguistic labels for sign video.
We develop a conceptual similarity loss which is able to utilise word embeddings from NLP methods to create sign embeddings that have better sign language to spoken language correspondence.
- Score: 33.72708697077754
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In natural language processing (NLP) of spoken languages, word embeddings
have been shown to be a useful method to encode the meaning of words. Sign
languages are visual languages, which require sign embeddings to capture the
visual and linguistic semantics of sign. Unlike many common approaches to Sign
Recognition, we focus on explicitly creating sign embeddings that bridge the
gap between sign language and spoken language. We propose a learning framework
to derive LCC (Learnt Contrastive Concept) embeddings for sign language, a
weakly supervised contrastive approach to learning sign embeddings. We train a
vocabulary of embeddings that are based on the linguistic labels for sign
video. Additionally, we develop a conceptual similarity loss which is able to
utilise word embeddings from NLP methods to create sign embeddings that have
better sign language to spoken language correspondence. These learnt
representations allow the model to automatically localise the sign in time. Our
approach achieves state-of-the-art keypoint-based sign recognition performance
on the WLASL and BOBSL datasets.
Related papers
- Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
Sign language serves as the primary meaning of communication for the deaf-mute community.
To facilitate communication between the deaf-mute and hearing people, a series of sign language understanding (SLU) tasks have been studied.
These tasks investigate sign language topics from diverse perspectives and raise challenges in learning effective representation of sign language videos.
arXiv Detail & Related papers (2024-08-16T06:04:25Z) - SignCLIP: Connecting Text and Sign Language by Contrastive Learning [39.72545568965546]
SignCLIP is an efficient method of learning useful visual representations for sign language processing from large-scale, multilingual video-text pairs.
We pretrain SignCLIP on Spreadthesign, a prominent sign language dictionary consisting of 500 thousand video clips in up to 44 sign languages.
We analyze the latent space formed by the spoken language text and sign language poses, which provides additional linguistic insights.
arXiv Detail & Related papers (2024-07-01T13:17:35Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
We study the feasibility of utilizing multilingual sign language corpora to facilitate continuous sign language recognition.
We first build two sign language dictionaries containing isolated signs that appear in two datasets.
Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model.
arXiv Detail & Related papers (2023-08-21T15:58:47Z) - Natural Language-Assisted Sign Language Recognition [28.64871971445024]
We propose the Natural Language-Assisted Sign Language Recognition framework.
It exploits semantic information contained in glosses (sign labels) to mitigate the problem of visually indistinguishable signs (VISigns) in sign languages.
Our method achieves state-of-the-art performance on three widely-adopted benchmarks: MSASL, WLASL, and NMFs-CSL.
arXiv Detail & Related papers (2023-03-21T17:59:57Z) - Signing at Scale: Learning to Co-Articulate Signs for Large-Scale
Photo-Realistic Sign Language Production [43.45785951443149]
Sign languages are visual languages, with vocabularies as rich as their spoken language counterparts.
Current deep-learning based Sign Language Production (SLP) models produce under-articulated skeleton pose sequences.
We tackle large-scale SLP by learning to co-articulate between dictionary signs.
We also propose SignGAN, a pose-conditioned human synthesis model that produces photo-realistic sign language videos.
arXiv Detail & Related papers (2022-03-29T08:51:38Z) - Read and Attend: Temporal Localisation in Sign Language Videos [84.30262812057994]
We train a Transformer model to ingest a continuous signing stream and output a sequence of written tokens.
We show that it acquires the ability to attend to a large vocabulary of sign instances in the input sequence, enabling their localisation.
arXiv Detail & Related papers (2021-03-30T16:39:53Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
Sign language is used by deaf or speech impaired people to communicate.
Skeleton-based recognition is becoming popular that it can be further ensembled with RGB-D based method to achieve state-of-the-art performance.
Inspired by the recent development of whole-body pose estimation citejin 2020whole, we propose recognizing sign language based on the whole-body key points and features.
arXiv Detail & Related papers (2021-03-16T03:38:17Z) - Watch, read and lookup: learning to spot signs from multiple supervisors [99.50956498009094]
Given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video.
We train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles which provide additional weak-supervision; and (3) looking up words in visual sign language dictionaries.
These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning.
arXiv Detail & Related papers (2020-10-08T14:12:56Z) - BSL-1K: Scaling up co-articulated sign language recognition using
mouthing cues [106.21067543021887]
We show how to use mouthing cues from signers to obtain high-quality annotations from video data.
The BSL-1K dataset is a collection of British Sign Language (BSL) signs of unprecedented scale.
arXiv Detail & Related papers (2020-07-23T16:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.