Improving 3D Pose Estimation for Sign Language
- URL: http://arxiv.org/abs/2308.09525v1
- Date: Fri, 18 Aug 2023 13:05:10 GMT
- Title: Improving 3D Pose Estimation for Sign Language
- Authors: Maksym Ivashechkin, Oscar Mendez, Richard Bowden
- Abstract summary: This work addresses 3D human pose reconstruction in single images.
We present a method that combines Forward Kinematics (FK) with neural networks to ensure a fast and valid prediction of 3D pose.
- Score: 38.20064386142944
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work addresses 3D human pose reconstruction in single images. We present
a method that combines Forward Kinematics (FK) with neural networks to ensure a
fast and valid prediction of 3D pose. Pose is represented as a hierarchical
tree/graph with nodes corresponding to human joints that model their physical
limits. Given a 2D detection of keypoints in the image, we lift the skeleton to
3D using neural networks to predict both the joint rotations and bone lengths.
These predictions are then combined with skeletal constraints using an FK layer
implemented as a network layer in PyTorch. The result is a fast and accurate
approach to the estimation of 3D skeletal pose. Through quantitative and
qualitative evaluation, we demonstrate the method is significantly more
accurate than MediaPipe in terms of both per joint positional error and visual
appearance. Furthermore, we demonstrate generalization over different datasets.
The implementation in PyTorch runs at between 100-200 milliseconds per image
(including CNN detection) using CPU only.
Related papers
- Co-Evolution of Pose and Mesh for 3D Human Body Estimation from Video [23.93644678238666]
We propose a Pose and Mesh Co-Evolution network (PMCE) to recover 3D human motion from a video.
The proposed PMCE outperforms previous state-of-the-art methods in terms of both per-frame accuracy and temporal consistency.
arXiv Detail & Related papers (2023-08-20T16:03:21Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image.
Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum.
arXiv Detail & Related papers (2022-07-30T01:48:23Z) - GCNDepth: Self-supervised Monocular Depth Estimation based on Graph
Convolutional Network [11.332580333969302]
This work brings a new solution with a set of improvements, which increase the quantitative and qualitative understanding of depth maps.
A graph convolutional network (GCN) can handle the convolution on non-Euclidean data and it can be applied to irregular image regions within a topological structure.
Our method provided comparable and promising results with a high prediction accuracy of 89% on the publicly KITTI and Make3D datasets.
arXiv Detail & Related papers (2021-12-13T16:46:25Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z) - 3D Human Pose Regression using Graph Convolutional Network [68.8204255655161]
We propose a graph convolutional network named PoseGraphNet for 3D human pose regression from 2D poses.
Our model's performance is close to the state-of-the-art, but with much fewer parameters.
arXiv Detail & Related papers (2021-05-21T14:41:31Z) - HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D
Human Pose and Shape Estimation [39.67289969828706]
We propose a novel hybrid inverse kinematics solution (HybrIK) to bridge the gap between body mesh estimation and 3D keypoint estimation.
HybrIK directly transforms accurate 3D joints to relative body-part rotations for 3D body mesh reconstruction.
We show that HybrIK preserves both the accuracy of 3D pose and the realistic body structure of the parametric human model.
arXiv Detail & Related papers (2020-11-30T10:32:30Z) - Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh
Recovery from a 2D Human Pose [70.23652933572647]
We propose a novel graph convolutional neural network (GraphCNN)-based system that estimates the 3D coordinates of human mesh vertices directly from the 2D human pose.
We show that our Pose2Mesh outperforms the previous 3D human pose and mesh estimation methods on various benchmark datasets.
arXiv Detail & Related papers (2020-08-20T16:01:56Z) - HDNet: Human Depth Estimation for Multi-Person Camera-Space Localization [83.57863764231655]
We propose the Human Depth Estimation Network (HDNet), an end-to-end framework for absolute root joint localization.
A skeleton-based Graph Neural Network (GNN) is utilized to propagate features among joints.
We evaluate our HDNet on the root joint localization and root-relative 3D pose estimation tasks with two benchmark datasets.
arXiv Detail & Related papers (2020-07-17T12:44:23Z) - HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation [7.559220068352681]
We propose a lightweight model called HOPE-Net which jointly estimates hand and object pose in 2D and 3D in real-time.
Our network uses a cascade of two adaptive graph convolutional neural networks, one to estimate 2D coordinates of the hand joints and object corners, followed by another to convert 2D coordinates to 3D.
arXiv Detail & Related papers (2020-03-31T19:01:42Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
Instead of directly regressing the 3D joint locations, we decompose the task into bone direction prediction and bone length prediction.
Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time.
Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets.
arXiv Detail & Related papers (2020-02-24T15:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.