Far3D: Expanding the Horizon for Surround-view 3D Object Detection
- URL: http://arxiv.org/abs/2308.09616v2
- Date: Sun, 17 Dec 2023 14:17:38 GMT
- Title: Far3D: Expanding the Horizon for Surround-view 3D Object Detection
- Authors: Xiaohui Jiang, Shuailin Li, Yingfei Liu, Shihao Wang, Fan Jia, Tiancai
Wang, Lijin Han, Xiangyu Zhang
- Abstract summary: This paper proposes a novel sparse query-based framework, dubbed Far3D.
By utilizing high-quality 2D object priors, we generate 3D adaptive queries that complement the 3D global queries.
We demonstrate SoTA performance on the challenging Argoverse 2 dataset, covering a wide range of 150 meters.
- Score: 15.045811199986924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently 3D object detection from surround-view images has made notable
advancements with its low deployment cost. However, most works have primarily
focused on close perception range while leaving long-range detection less
explored. Expanding existing methods directly to cover long distances poses
challenges such as heavy computation costs and unstable convergence. To address
these limitations, this paper proposes a novel sparse query-based framework,
dubbed Far3D. By utilizing high-quality 2D object priors, we generate 3D
adaptive queries that complement the 3D global queries. To efficiently capture
discriminative features across different views and scales for long-range
objects, we introduce a perspective-aware aggregation module. Additionally, we
propose a range-modulated 3D denoising approach to address query error
propagation and mitigate convergence issues in long-range tasks. Significantly,
Far3D demonstrates SoTA performance on the challenging Argoverse 2 dataset,
covering a wide range of 150 meters, surpassing several LiDAR-based approaches.
Meanwhile, Far3D exhibits superior performance compared to previous methods on
the nuScenes dataset. The code is available at
https://github.com/megvii-research/Far3D.
Related papers
- What Matters in Range View 3D Object Detection [15.147558647138629]
Lidar-based perception pipelines rely on 3D object detection models to interpret complex scenes.
We achieve state-of-the-art amongst range-view 3D object detection models without using multiple techniques proposed in past range-view literature.
arXiv Detail & Related papers (2024-07-23T18:42:37Z) - SparseFusion: Efficient Sparse Multi-Modal Fusion Framework for Long-Range 3D Perception [47.000734648271006]
We introduce SparseFusion, a novel multi-modal fusion framework built upon sparse 3D features to facilitate efficient long-range perception.
The proposed module introduces sparsity from both semantic and geometric aspects which only fill grids that foreground objects potentially reside in.
On the long-range Argoverse2 dataset, SparseFusion reduces memory footprint and accelerates the inference by about two times compared to dense detectors.
arXiv Detail & Related papers (2024-03-15T05:59:10Z) - Improving Distant 3D Object Detection Using 2D Box Supervision [97.80225758259147]
We propose LR3D, a framework that learns to recover the missing depth of distant objects.
Our framework is general, and could widely benefit 3D detection methods to a large extent.
arXiv Detail & Related papers (2024-03-14T09:54:31Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
Currently prevalent multimodal 3D detection methods are built upon LiDAR-based detectors that usually use dense Bird's-Eye-View feature maps.
Fully sparse architecture is gaining attention as they are highly efficient in long-range perception.
In this paper, we study how to effectively leverage image modality in the emerging fully sparse architecture.
arXiv Detail & Related papers (2023-04-24T17:57:43Z) - Far3Det: Towards Far-Field 3D Detection [67.38417186733487]
We focus on the task of far-field 3D detection (Far3Det) of objects beyond a certain distance from an observer.
Far3Det is particularly important for autonomous vehicles (AVs) operating at highway speeds.
We develop a method to find well-annotated scenes from the nuScenes dataset and derive a well-annotated far-field validation set.
We propose a Far3Det evaluation protocol and explore various 3D detection methods for Far3Det.
arXiv Detail & Related papers (2022-11-25T02:07:57Z) - Scatter Points in Space: 3D Detection from Multi-view Monocular Images [8.71944437852952]
3D object detection from monocular image(s) is a challenging and long-standing problem of computer vision.
Recent methods tend to aggregate multiview feature by sampling regular 3D grid densely in space.
We propose a learnable keypoints sampling method, which scatters pseudo surface points in 3D space, in order to keep data sparsity.
arXiv Detail & Related papers (2022-08-31T09:38:05Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.