論文の概要: Virtual imaging trials improved the transparency and reliability of AI systems in COVID-19 imaging
- arxiv url: http://arxiv.org/abs/2308.09730v2
- Date: Sun, 31 Mar 2024 19:28:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 15:44:31.030626
- Title: Virtual imaging trials improved the transparency and reliability of AI systems in COVID-19 imaging
- Title(参考訳): 仮想画像検査は、新型コロナウイルス画像におけるAIシステムの透明性と信頼性を改善した
- Authors: Fakrul Islam Tushar, Lavsen Dahal, Saman Sotoudeh-Paima, Ehsan Abadi, W. Paul Segars, Ehsan Samei, Joseph Y. Lo,
- Abstract要約: 医用画像におけるAIモデルの信頼性は、しばしば問題や臨床的洞察の曖昧さによって疑問視される。
臨床とシミュレーションの両方の医療画像の多種多様なコレクションを利用する仮想画像トライアルフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.6040478776985583
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The credibility of AI models in medical imaging is often challenged by reproducibility issues and obscured clinical insights, a reality highlighted during the COVID-19 pandemic by many reports of near-perfect artificial intelligence (AI) models that all failed to generalize. To address these concerns, we propose a virtual imaging trial framework, employing a diverse collection of medical images that are both clinical and simulated. In this study, COVID-19 serves as a case example to unveil the intrinsic and extrinsic factors influencing AI performance. Our findings underscore a significant impact of dataset characteristics on AI efficacy. Even when trained on large, diverse clinical datasets with thousands of patients, AI performance plummeted by up to 20% in generalization. However, virtual imaging trials offer a robust platform for objective assessment, unveiling nuanced insights into the relationships between patient- and physics-based factors and AI performance. For instance, disease extent markedly influenced AI efficacy, computed tomography (CT) out-performed chest radiography (CXR), while imaging dose exhibited minimal impact. Using COVID-19 as a case study, this virtual imaging trial study verified that radiology AI models often suffer from a reproducibility crisis. Virtual imaging trials not only offered a solution for objective performance assessment but also extracted several clinical insights. This study illuminates the path for leveraging virtual imaging to augment the reliability, transparency, and clinical relevance of AI in medical imaging.
- Abstract(参考訳): 医療画像におけるAIモデルの信頼性は、再現性の問題や臨床的洞察の曖昧さによってしばしば疑問視される。
これらの問題に対処するために,臨床とシミュレーションの両方の医療画像の多種多様なコレクションを活用する仮想画像トライアルフレームワークを提案する。
本研究は、AIのパフォーマンスに影響を与える本質的および外因的要因を明らかにするための事例として、COVID-19が役立ちます。
以上の結果から,データセット特性がAIの有効性に与える影響が示唆された。
何千もの患者による大規模で多様な臨床データセットをトレーニングしても、AIのパフォーマンスは最大20%低下した。
しかし、仮想画像治験は客観的評価のための堅牢なプラットフォームを提供し、患者と物理学に基づく要因とAIのパフォーマンスの関係に関する微妙な洞察を明らかにしている。
例えば、疾患の範囲はAIの有効性に大きな影響を与え、CT(Computerd tomography)は胸部X線撮影(CXR)より優れ、画像線量による影響は最小限であった。
この仮想画像実験は、新型コロナウイルスをケーススタディとして、放射線学のAIモデルが再現性の危機に悩まされることを実証した。
仮想画像検査は、客観的なパフォーマンス評価のソリューションを提供するだけでなく、いくつかの臨床的知見も抽出した。
本研究は, 医用画像におけるAIの信頼性, 透明性, 臨床的妥当性を高めるために, 仮想画像を活用するための道筋を照らすものである。
関連論文リスト
- 2D and 3D Deep Learning Models for MRI-based Parkinson's Disease Classification: A Comparative Analysis of Convolutional Kolmogorov-Arnold Networks, Convolutional Neural Networks, and Graph Convolutional Networks [0.0]
本研究はパーキンソン病の診断にConvolutional Kolmogorov-Arnold Networks(ConvKANs)を適用した。
ConvKANは、構造MRIを用いたPD分類のために、学習可能なアクティベーション機能を畳み込み層に統合する。
医用画像用ConvKANの最初の3D実装について紹介し、その性能を畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCN)と比較した。
これらの知見は, PD検出に対するConvKANsの可能性を強調し, 脳の微妙な変化を捉える上での3D解析の重要性を強調し, データセット間の一般化の課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-07-24T16:04:18Z) - Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
本研究は,変圧器を用いた深層学習モデルにMR画像,臨床および分子病理学的データを統合することにより,グリオーマの生存率予測を改善することを目的とする。
このモデルは、自己教師付き学習技術を用いて、高次元MRI入力を効果的に符号化し、クロスアテンションを用いた非画像データと統合する。
論文 参考訳(メタデータ) (2024-05-21T17:44:48Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
ビジョントランスフォーマー(ViT)は近年、コンピュータビジョンアプリケーションのためのCNNの代替として登場した。
難易度に基づいて,脳神経画像の下流タスクに対するViTアーキテクチャの変種を検証した。
合成および実MRIスキャンで事前訓練した微調整型視覚変換器モデルを用いて、5%と9-10%の性能向上を実現した。
論文 参考訳(メタデータ) (2023-03-14T20:18:12Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Virtual vs. Reality: External Validation of COVID-19 Classifiers using
XCAT Phantoms for Chest Computed Tomography [2.924350993741562]
CVIT-COVIDデータセットを作成し、シミュレーションされたCOVID-19および正常ファントムモデルからの180個の仮想画像計算断層撮影(CT)画像を作成した。
ウォータールー大学のオープンソース深層学習モデルの性能を多施設データを用いて評価した。
我々は,305枚のCT画像のオープンな臨床データに対して,実際の臨床データと仮想的な臨床データのパフォーマンスを比較検討した。
論文 参考訳(メタデータ) (2022-03-07T00:11:53Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
ディープラーニングモデルのトレーニングでは、パフォーマンスと信頼の間に妥協をしなければなりません。
本研究は、新型コロナウイルス患者のコンピュータ支援スクリーニングのための自己教師型学習と新しい代理損失を統合したものである。
論文 参考訳(メタデータ) (2021-12-14T21:16:52Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。