論文の概要: The Utility of the Virtual Imaging Trials Methodology for Objective Characterization of AI Systems and Training Data
- arxiv url: http://arxiv.org/abs/2308.09730v5
- Date: Wed, 16 Jul 2025 17:29:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 12:30:11.71203
- Title: The Utility of the Virtual Imaging Trials Methodology for Objective Characterization of AI Systems and Training Data
- Title(参考訳): AIシステムとトレーニングデータの客観的評価のための仮想イメージング試行法の有用性
- Authors: Fakrul Islam Tushar, Lavsen Dahal, Saman Sotoudeh-Paima, Ehsan Abadi, W. Paul Segars, Ehsan Samei, Joseph Y. Lo,
- Abstract要約: 臨床および仮想CTとCXRを用いた畳み込みニューラルネットワークを用いた新型コロナウイルスの診断例について検討した。
複数のAIモデルは、多様なデータセットにわたる3D ResNet-likeと2D EfficientNetv2アーキテクチャを使用して開発、テストされた。
VITアプローチは、モデルの透明性と信頼性を高めるために使用することができ、AIのパフォーマンスを駆動する要因に関する微妙な洞察を提供し、実験的および臨床的設定のギャップを埋める。
- 参考スコア(独自算出の注目度): 1.6040478776985583
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Purpose: The credibility of Artificial Intelligence (AI) models for medical imaging continues to be a challenge, affected by the diversity of models, the data used to train the models, and applicability of their combination to produce reproducible results for new data. Approach: In this work we aimed to explore if the emerging Virtual Imaging Trials (VIT) methodologies can provide an objective resource to approach this challenge. The study was conducted for the case example of COVID-19 diagnosis using clinical and virtual computed tomography (CT) and chest radiography (CXR) processed with convolutional neural networks. Multiple AI models were developed and tested using 3D ResNet-like and 2D EfficientNetv2 architectures across diverse datasets. Results: The performance differences were evaluated in terms of the area under the curve (AUC) and the DeLong method for AUC confidence intervals. The models trained on the most diverse datasets showed the highest external testing performance, with AUC values ranging from 0.73-0.76 for CT and 0.70-0.73 for CXR. Internal testing yielded higher AUC values (0.77 -0.85 for CT and 0.77-1.0 for CXR), highlighting a substantial drop in performance during external validation, which underscores the importance of diverse and comprehensive training and testing data. Most notably, VIT approach provided objective assessment of the utility of diverse models and datasets while further providing insight into the influence of dataset characteristics, patient factors, and imaging physics on AI efficacy. Conclusions: The VIT approach can be used to enhance model transparency and reliability, offering nuanced insights into the factors driving AI performance and bridging the gap between experimental and clinical settings.
- Abstract(参考訳): 目的: 医療画像のための人工知能(AI)モデルの信頼性は、モデルの多様性、モデルのトレーニングに使用されるデータ、新しいデータに対して再現可能な結果を生成するためのそれらの組み合わせの適用性の影響を受け、引き続き課題である。
アプローチ:本研究は,VIT(Virtual Imaging Trials)方法論が,この課題に対処するための客観的リソースを提供することができるかどうかを検討することを目的としている。
臨床および仮想CTとCXRを用いた畳み込みニューラルネットワークを用いた新型コロナウイルスの診断例について検討した。
複数のAIモデルは、多様なデータセットにわたる3D ResNet-likeと2D EfficientNetv2アーキテクチャを使用して開発、テストされた。
結果: 曲線下面積(AUC)とAUC信頼区間のDeLong法を用いて, 性能差を評価した。
最も多様なデータセットでトレーニングされたモデルは、AUCがCTで0.73-0.76、CXRで0.70-0.73と、最高の外部テスト性能を示した。
内部テストはより高いAUC値(CTは0.77-0.85、CXRは0.77-1.0)を獲得し、外部検証におけるパフォーマンスの大幅な低下を強調し、多様な総合的なトレーニングとテストデータの重要性を強調した。
VITアプローチは、さまざまなモデルとデータセットの有用性を客観的に評価すると同時に、データセットの特徴、患者要因、画像物理学がAIの有効性に与える影響に関する洞察を提供する。
結論: VITアプローチは、モデルの透明性と信頼性を高めるために使用することができ、AIのパフォーマンスを駆動する要因に関する微妙な洞察を提供し、実験的および臨床的設定のギャップを埋める。
関連論文リスト
- Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
胸部X線撮影における疾患検出のための放射線治療と深層学習によるアプローチについて検討した。
深層学習モデルは画像データから直接学習し、放射能ベースのモデルは手作りの特徴を抽出する。
これらの知見は、診断AIにおけるモデル選択のための統計的に検証された、データ駆動の推奨を提供する。
論文 参考訳(メタデータ) (2025-04-16T16:54:37Z) - Artificial Intelligence-Driven Prognostic Classification of COVID-19 Using Chest X-rays: A Deep Learning Approach [0.0]
本研究では,Chest X線画像を用いて,新型コロナウイルスの重症度(中・中・重症度)を分類するための高精度深層学習モデルを提案する。
平均精度は97%,特異性は99%,感度は87%,F1スコアは93.11%であった。
これらの結果は、実際の臨床応用におけるモデルの可能性を示している。
論文 参考訳(メタデータ) (2025-03-17T15:27:21Z) - 2D and 3D Deep Learning Models for MRI-based Parkinson's Disease Classification: A Comparative Analysis of Convolutional Kolmogorov-Arnold Networks, Convolutional Neural Networks, and Graph Convolutional Networks [0.0]
本研究はパーキンソン病の診断にConvolutional Kolmogorov-Arnold Networks(ConvKANs)を適用した。
ConvKANは、構造MRIを用いたPD分類のために、学習可能なアクティベーション機能を畳み込み層に統合する。
医用画像用ConvKANの最初の3D実装について紹介し、その性能を畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCN)と比較した。
これらの知見は, PD検出に対するConvKANsの可能性を強調し, 脳の微妙な変化を捉える上での3D解析の重要性を強調し, データセット間の一般化の課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-07-24T16:04:18Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
本研究は,変圧器を用いた深層学習モデルにMR画像,臨床および分子病理学的データを統合することにより,グリオーマの生存率予測を改善することを目的とする。
このモデルは、自己教師付き学習技術を用いて、高次元MRI入力を効果的に符号化し、クロスアテンションを用いた非画像データと統合する。
論文 参考訳(メタデータ) (2024-05-21T17:44:48Z) - Deep Learning-Based Brain Image Segmentation for Automated Tumour Detection [0.0]
目的は、最先端の畳み込みニューラルネットワーク(CNN)を、セグメント化のための脳MRIスキャンの大規模なデータセットに活用することである。
提案手法は,性能向上と一般化性向上のために前処理技術を適用した。
論文 参考訳(メタデータ) (2024-04-06T15:09:49Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense
Active Learning for Super-resolution [47.38982697349244]
デンス回帰(Dense regression)は、画像の超解像、エンハンスメント、深さ推定などのタスクのためのコンピュータビジョンで広く使われているアプローチである。
この問題に対処するために,能動学習を高密度回帰モデルに組み込むことを提案する。
アクティブな学習により、モデルはラベル付けのための最も有益なサンプルを選択し、全体的なアノテーションコストを削減し、パフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2023-05-27T16:33:43Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
ビジョントランスフォーマー(ViT)は近年、コンピュータビジョンアプリケーションのためのCNNの代替として登場した。
難易度に基づいて,脳神経画像の下流タスクに対するViTアーキテクチャの変種を検証した。
合成および実MRIスキャンで事前訓練した微調整型視覚変換器モデルを用いて、5%と9-10%の性能向上を実現した。
論文 参考訳(メタデータ) (2023-03-14T20:18:12Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Virtual vs. Reality: External Validation of COVID-19 Classifiers using
XCAT Phantoms for Chest Computed Tomography [2.924350993741562]
CVIT-COVIDデータセットを作成し、シミュレーションされたCOVID-19および正常ファントムモデルからの180個の仮想画像計算断層撮影(CT)画像を作成した。
ウォータールー大学のオープンソース深層学習モデルの性能を多施設データを用いて評価した。
我々は,305枚のCT画像のオープンな臨床データに対して,実際の臨床データと仮想的な臨床データのパフォーマンスを比較検討した。
論文 参考訳(メタデータ) (2022-03-07T00:11:53Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
ディープラーニングモデルのトレーニングでは、パフォーマンスと信頼の間に妥協をしなければなりません。
本研究は、新型コロナウイルス患者のコンピュータ支援スクリーニングのための自己教師型学習と新しい代理損失を統合したものである。
論文 参考訳(メタデータ) (2021-12-14T21:16:52Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。