論文の概要: Event-based Dynamic Graph Representation Learning for Patent Application
Trend Prediction
- arxiv url: http://arxiv.org/abs/2308.09780v2
- Date: Tue, 5 Sep 2023 03:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 03:15:05.267648
- Title: Event-based Dynamic Graph Representation Learning for Patent Application
Trend Prediction
- Title(参考訳): 特許出願傾向予測のためのイベントベース動的グラフ表現学習
- Authors: Tao Zou, Le Yu, Leilei Sun, Bowen Du, Deqing Wang, Fuzhen Zhuang
- Abstract要約: 本稿では,特許出願傾向予測のためのイベントベースのグラフ学習フレームワークを提案する。
特に,当社の手法は,企業および特許分類コードの両方の記憶可能な表現に基づいて構築されている。
- 参考スコア(独自算出の注目度): 45.0907126466271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of what types of patents that companies will apply for in
the next period of time can figure out their development strategies and help
them discover potential partners or competitors in advance. Although important,
this problem has been rarely studied in previous research due to the challenges
in modelling companies' continuously evolving preferences and capturing the
semantic correlations of classification codes. To fill in this gap, we propose
an event-based dynamic graph learning framework for patent application trend
prediction. In particular, our method is founded on the memorable
representations of both companies and patent classification codes. When a new
patent is observed, the representations of the related companies and
classification codes are updated according to the historical memories and the
currently encoded messages. Moreover, a hierarchical message passing mechanism
is provided to capture the semantic proximities of patent classification codes
by updating their representations along the hierarchical taxonomy. Finally, the
patent application trend is predicted by aggregating the representations of the
target company and classification codes from static, dynamic, and hierarchical
perspectives. Experiments on real-world data demonstrate the effectiveness of
our approach under various experimental conditions, and also reveal the
abilities of our method in learning semantics of classification codes and
tracking technology developing trajectories of companies.
- Abstract(参考訳): 企業が次の期間に申請する特許の種類を正確に予測することは、彼らの開発戦略を解明し、事前に潜在的なパートナーや競合相手を見つけるのに役立つ。
この問題は, 企業における継続的な嗜好のモデル化と, 分類コードの意味的相関を捉えることの難しさから, これまでの研究では, ほとんど研究されていない。
このギャップを埋めるために,特許出願傾向予測のためのイベントベースの動的グラフ学習フレームワークを提案する。
特に,本手法は,企業と特許分類コードの記憶に残る表現に基づくものである。
新しい特許が観察されると、履歴記憶や現在符号化されているメッセージに基づいて関連企業や分類コードの表示が更新される。
さらに、階層的分類法に沿ってそれらの表現を更新することにより、特許分類コードの意味的近さをキャプチャする階層的メッセージパッシング機構を提供する。
最後に、特許出願の傾向は、静的、動的、階層的な観点から、ターゲット企業の表現と分類コードの集約によって予測される。
実世界データを用いた実験により,様々な実験条件下でのアプローチの有効性が示され,また,分類コードの意味学習や企業の軌道開発のための追跡技術における手法の能力も明らかにされている。
関連論文リスト
- DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
本稿では,これらの問題に対処するための知識のない新しいグラフ学習手法を提案する。
まず,信号処理の観点から,エントロピー駆動エッジ生成による動的ストックグラフの自動構築を行う。
最後に, 特徴的階層内特徴を捉えるために, 分離表現学習方式を採用する。
論文 参考訳(メタデータ) (2024-01-03T17:36:27Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - Adaptive Taxonomy Learning and Historical Patterns Modelling for Patent Classification [26.85734804493925]
本稿では,特許分類に関する特許に関する情報を包括的に検討する統合フレームワークを提案する。
まず,その意味表現を導出するためのICC符号相関学習モジュールを提案する。
最後に、IPC符号のセマンティクスを含む特許文書の文脈情報と、予測を行うために利用者のシーケンシャルな選好を割り当てる。
論文 参考訳(メタデータ) (2023-08-10T07:02:24Z) - Classification of Visualization Types and Perspectives in Patents [9.123089032348311]
我々は、特許画像の可視化タイプと視点の分類に最先端のディープラーニング手法を採用する。
我々は、画像の観点から弱いラベル付きデータを提供するデータセットから、階層的な一連のクラスを導出する。
論文 参考訳(メタデータ) (2023-07-19T21:45:07Z) - Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold
Learning [9.171175292808144]
本稿では,教師なしおよび半教師付きシナリオに対するランクフロー埋め込み (RFE) という新しい多様体学習アルゴリズムを提案する。
RFEは文脈に敏感な埋め込みを計算し、それはランクベースの処理フローに従って洗練される。
生成された埋め込みは、より効果的な教師なし検索や半教師付き分類に利用することができる。
論文 参考訳(メタデータ) (2023-04-24T21:02:12Z) - Label-efficient Time Series Representation Learning: A Review [19.218833228063392]
ラベル効率のよい時系列表現学習は、現実世界のアプリケーションにディープラーニングモデルをデプロイするのに不可欠である。
ラベル付き時系列データの不足に対処するため、転送学習、自己教師付き学習、半教師付き学習など様々な戦略が開発されている。
既存のアプローチを,外部データソースへの依存に基づいて,ドメイン内あるいはクロスドメインとして分類する,新たな分類法を初めて導入する。
論文 参考訳(メタデータ) (2023-02-13T15:12:15Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
本研究では,個別のエージェントが異なる次元のストリーミング特徴を観察しながら分類問題の解決を目指す分散アーキテクチャを提案する。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
論文 参考訳(メタデータ) (2021-12-17T12:47:18Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
ラベル付きクラスとラベルなしクラスの両方の例に基づく表現学習を通じて、データセットにおける新しい概念を識別することに興味がある。
異種ラベル空間上の複数の教師付きメタクラス分類器によって与えられる構成知識を用いて、自然に未知のクラス内のサンプルをクラスタリングする学習手法を提案する。
提案アルゴリズムは,未確認クラスの識別性の向上と,新しいクラスに一般化可能な既知のクラス表現の学習を併用して,新しい概念を探索する。
論文 参考訳(メタデータ) (2021-06-29T11:51:57Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。