Physics-Guided Human Motion Capture with Pose Probability Modeling
- URL: http://arxiv.org/abs/2308.09910v1
- Date: Sat, 19 Aug 2023 05:28:03 GMT
- Title: Physics-Guided Human Motion Capture with Pose Probability Modeling
- Authors: Jingyi Ju, Buzhen Huang, Chen Zhu, Zhihao Li and Yangang Wang
- Abstract summary: Existing solutions always adopt kinematic results as reference motions, and the physics is treated as a post-processing module.
We employ physics as denoising guidance in the reverse diffusion process to reconstruct human motion from a modeled pose probability distribution.
With several iterations, the physics-based tracking and kinematic denoising promote each other to generate a physically plausible human motion.
- Score: 35.159506668475565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating physics in human motion capture to avoid artifacts like
floating, foot sliding, and ground penetration is a promising direction.
Existing solutions always adopt kinematic results as reference motions, and the
physics is treated as a post-processing module. However, due to the depth
ambiguity, monocular motion capture inevitably suffers from noises, and the
noisy reference often leads to failure for physics-based tracking. To address
the obstacles, our key-idea is to employ physics as denoising guidance in the
reverse diffusion process to reconstruct physically plausible human motion from
a modeled pose probability distribution. Specifically, we first train a latent
gaussian model that encodes the uncertainty of 2D-to-3D lifting to facilitate
reverse diffusion. Then, a physics module is constructed to track the motion
sampled from the distribution. The discrepancies between the tracked motion and
image observation are used to provide explicit guidance for the reverse
diffusion model to refine the motion. With several iterations, the
physics-based tracking and kinematic denoising promote each other to generate a
physically plausible human motion. Experimental results show that our method
outperforms previous physics-based methods in both joint accuracy and success
rate. More information can be found at
\url{https://github.com/Me-Ditto/Physics-Guided-Mocap}.
Related papers
- Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos [6.093379844890164]
We propose a novel method to selectively incorporate the physics models with the kinematics observations in an online setting.
A recurrent neural network is introduced to realize a Kalman filter that attentively balances the kinematics input and simulated motion.
The proposed approach excels in the physics-based human pose estimation task and demonstrates the physical plausibility of the predictive dynamics.
arXiv Detail & Related papers (2024-10-10T10:24:59Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
We propose to learn the physical properties of a material field with video diffusion priors.
We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
arXiv Detail & Related papers (2024-06-03T16:05:25Z) - PhysDiff: Physics-Guided Human Motion Diffusion Model [101.1823574561535]
Existing motion diffusion models largely disregard the laws of physics in the diffusion process.
PhysDiff incorporates physical constraints into the diffusion process.
Our approach achieves state-of-the-art motion quality and improves physical plausibility drastically.
arXiv Detail & Related papers (2022-12-05T18:59:52Z) - D&D: Learning Human Dynamics from Dynamic Camera [55.60512353465175]
We present D&D (Learning Human Dynamics from Dynamic Camera), which leverages the laws of physics to reconstruct 3D human motion from the in-the-wild videos with a moving camera.
Our approach is entirely neural-based and runs without offline optimization or simulation in physics engines.
arXiv Detail & Related papers (2022-09-19T06:51:02Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
We focus on the task of estimating a physically plausible articulated human motion from monocular video.
Existing approaches that do not consider physics often produce temporally inconsistent output with motion artifacts.
We show that our approach achieves competitive results with respect to existing physics-based methods on the Human3.6M benchmark.
arXiv Detail & Related papers (2022-05-24T18:02:49Z) - Neural MoCon: Neural Motion Control for Physically Plausible Human
Motion Capture [12.631678059354593]
We exploit the high-precision and non-differentiable physics simulator to incorporate dynamical constraints in motion capture.
Our key-idea is to use real physical supervisions to train a target pose distribution prior for sampling-based motion control.
Results show that we can obtain physically plausible human motion with complex terrain interactions, human shape variations, and diverse behaviors.
arXiv Detail & Related papers (2022-03-26T12:48:41Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
Existing deep models predict 2D and 3D kinematic poses from video that are approximately accurate, but contain visible errors.
We present a physics-based method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose estimates as input.
arXiv Detail & Related papers (2020-07-22T21:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.