論文の概要: Weakly-Supervised Action Localization by Hierarchically-structured
Latent Attention Modeling
- arxiv url: http://arxiv.org/abs/2308.09946v2
- Date: Tue, 26 Sep 2023 03:37:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 17:26:29.086564
- Title: Weakly-Supervised Action Localization by Hierarchically-structured
Latent Attention Modeling
- Title(参考訳): 階層構造潜在注意モデルによる弱教師付き行動定位
- Authors: Guiqin Wang and Peng Zhao and Cong Zhao and Shusen Yang and Jie Cheng
and Luziwei Leng and Jianxing Liao and Qinghai Guo
- Abstract要約: 弱教師付きアクションローカライゼーションは、ビデオレベルのラベルのみを持つ未トリミングビデオにおけるアクションインスタンスを認識およびローカライズすることを目的としている。
既存のモデルのほとんどはマルチインスタンス学習(MIL)に依存しており、ラベル付きバッグを分類することでラベル付きインスタンスの予測を監督している。
本稿では,特徴セマンティクスの時間的変動を学習するために,新しい注意に基づく階層構造潜在モデルを提案する。
- 参考スコア(独自算出の注目度): 19.683714649646603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly-supervised action localization aims to recognize and localize action
instancese in untrimmed videos with only video-level labels. Most existing
models rely on multiple instance learning(MIL), where the predictions of
unlabeled instances are supervised by classifying labeled bags. The MIL-based
methods are relatively well studied with cogent performance achieved on
classification but not on localization. Generally, they locate temporal regions
by the video-level classification but overlook the temporal variations of
feature semantics. To address this problem, we propose a novel attention-based
hierarchically-structured latent model to learn the temporal variations of
feature semantics. Specifically, our model entails two components, the first is
an unsupervised change-points detection module that detects change-points by
learning the latent representations of video features in a temporal hierarchy
based on their rates of change, and the second is an attention-based
classification model that selects the change-points of the foreground as the
boundaries. To evaluate the effectiveness of our model, we conduct extensive
experiments on two benchmark datasets, THUMOS-14 and ActivityNet-v1.3. The
experiments show that our method outperforms current state-of-the-art methods,
and even achieves comparable performance with fully-supervised methods.
- Abstract(参考訳): 弱教師付きアクションローカライゼーションは、ビデオレベルのラベルのみを持つ未トリミングビデオにおけるアクションインスタンスを認識およびローカライズすることを目的としている。
既存のモデルの多くはマルチインスタンス学習(mil)に依存しており、ラベルなしインスタンスの予測はラベル付きバッグの分類によって監督される。
MILに基づく手法は、分類において達成されるコジェント性能と比較的よく研究されているが、ローカライゼーションについては研究されていない。
一般に、ビデオレベルの分類によって時間領域を特定するが、特徴的意味論の時間的変動を無視する。
そこで本研究では,特徴セマンティクスの時間変化を学習するための新しい注意に基づく階層構造潜在モデルを提案する。
具体的には、2つのコンポーネントを包含し、1つは教師なしの変更点検出モジュールで、変化率に基づいて時間階層内の映像特徴の潜在表現を学習し、もう1つは前景の変化点を境界として選択する注意に基づく分類モデルである。
本モデルの有効性を評価するため, THUMOS-14とActivityNet-v1.3の2つのベンチマークデータセットに対して広範囲な実験を行った。
実験の結果,本手法は現在の最先端手法よりも優れており,完全教師付き手法で同等の性能を達成できることがわかった。
関連論文リスト
- Unsupervised Temporal Action Localization via Self-paced Incremental
Learning [57.55765505856969]
本稿では,クラスタリングとローカライズトレーニングを同時に行うための,自己ペースの漸進学習モデルを提案する。
我々は,2つの段階的なインスタンス学習戦略を設計し,ビデオ擬似ラベルの信頼性を確保する。
論文 参考訳(メタデータ) (2023-12-12T16:00:55Z) - ZEETAD: Adapting Pretrained Vision-Language Model for Zero-Shot
End-to-End Temporal Action Detection [10.012716326383567]
時間的行動検出(TAD)は、未トリミングビデオ内のアクションインスタンスのローカライズと分類を含む。
ZEETADには2つのモジュールがあり、双対局在化とゼロショット提案分類という2つのモジュールがある。
軽量なアダプタで冷凍したCLIPエンコーダを最小限に更新することで、未確認クラスの識別能力を向上する。
論文 参考訳(メタデータ) (2023-11-01T00:17:37Z) - ATTA: Anomaly-aware Test-Time Adaptation for Out-of-Distribution
Detection in Segmentation [22.084967085509387]
ドメインシフトとセマンティックシフトを協調的に扱うための二重レベルOOD検出フレームワークを提案する。
第1のレベルは、グローバルな低レベル機能を活用することで、画像内にドメインシフトが存在するかどうかを区別する。
第2のレベルは、高次特徴写像を高密度に利用することにより、セマンティックシフトを伴う画素を識別する。
論文 参考訳(メタデータ) (2023-09-12T06:49:56Z) - Weakly-Supervised Temporal Action Localization by Inferring Salient
Snippet-Feature [26.7937345622207]
弱教師付き時間的アクションローカライゼーションは、教師なしビデオ内のアクション領域を特定し、アクションカテゴリを同時に特定することを目的としている。
擬似ラベル生成は、この課題を解決するための有望な戦略であるが、現在の手法ではビデオの自然な時間構造を無視している。
そこで本研究では,有意なスニペット特徴を推定し,時間的動作の局所化を弱く制御する手法を提案する。
論文 参考訳(メタデータ) (2023-03-22T06:08:34Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
本稿では,シーケンス・ツー・シーケンスの区別を文脈的に比較することで学習が,弱い教師付き行動の局所化に不可欠な帰納的バイアスをもたらすことを論じる。
微分可能な動的プログラミングの定式化の下では、FSD(Fen-fine Sequence Distance)とLCS(Longest Common Subsequence)の2つの相補的コントラストが設計されている。
提案手法は,2つのベンチマークにおいて最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-03-31T05:13:50Z) - ASM-Loc: Action-aware Segment Modeling for Weakly-Supervised Temporal
Action Localization [36.90693762365237]
微弱に監督された時間的アクションローカライゼーションは、トレーニングのためにビデオレベルのアクションラベルのみを与えられた未トリミングビデオ中のアクションセグメントを認識し、ローカライズすることを目的としている。
我々は,標準のMIL法を超越した,明示的でアクション対応のセグメントモデリングを可能にする WTAL フレームワークである System を提案する。
本フレームワークでは, 短時間動作の寄与を補う動的セグメントサンプリング, (ii) 動作のダイナミクスをモデル化し, 時間的依存性を捉えるためのセグメント間注意, (iii) 動作境界予測を改善するための擬似インスタンスレベルの監視の3つの要素を包含する。
論文 参考訳(メタデータ) (2022-03-29T01:59:26Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z) - Weakly Supervised Temporal Action Localization Through Learning Explicit
Subspaces for Action and Context [151.23835595907596]
ビデオレベルの監視のみの下で、アクションインスタンスの時間的開始と終了をローカライズする方法を学ぶ。
アクションとコンテキストそれぞれについて,2つの機能サブスペースを学習するフレームワークを提案する。
提案手法は3つのベンチマークで最先端のWS-TAL法より優れている。
論文 参考訳(メタデータ) (2021-03-30T08:26:53Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S時間動作の局所化はコンピュータビジョンにおいて重要な問題である。
本稿では、エンドツーエンドの教師なしドメイン適応アルゴリズムを提案する。
空間的特徴と時間的特徴を別々にあるいは共同的に適応した場合に,顕著な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-10-19T04:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。