論文の概要: Scene-Aware Feature Matching
- arxiv url: http://arxiv.org/abs/2308.09949v1
- Date: Sat, 19 Aug 2023 08:56:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 18:48:04.551310
- Title: Scene-Aware Feature Matching
- Title(参考訳): シーン認識機能マッチング
- Authors: Xiaoyong Lu, Yaping Yan, Tong Wei, Songlin Du
- Abstract要約: 本稿では,Scene-Aware機能マッチングのガイドに注目グループ化を適用したSAMという新しいモデルを提案する。
センスアウェアなグループ化ガイダンスでは、SAMは従来の特徴マッチングモデルよりも正確で堅牢であり、解釈性も高い。
- 参考スコア(独自算出の注目度): 13.014369025829598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current feature matching methods focus on point-level matching, pursuing
better representation learning of individual features, but lacking further
understanding of the scene. This results in significant performance degradation
when handling challenging scenes such as scenes with large viewpoint and
illumination changes. To tackle this problem, we propose a novel model named
SAM, which applies attentional grouping to guide Scene-Aware feature Matching.
SAM handles multi-level features, i.e., image tokens and group tokens, with
attention layers, and groups the image tokens with the proposed token grouping
module. Our model can be trained by ground-truth matches only and produce
reasonable grouping results. With the sense-aware grouping guidance, SAM is not
only more accurate and robust but also more interpretable than conventional
feature matching models. Sufficient experiments on various applications,
including homography estimation, pose estimation, and image matching,
demonstrate that our model achieves state-of-the-art performance.
- Abstract(参考訳): 現在の特徴マッチング手法は、個々の特徴のより良い表現学習を追求するが、シーンのさらなる理解は欠如している。
これにより、視点の広いシーンや照明の変化といった困難なシーンを扱う場合のパフォーマンスが大幅に低下する。
この問題に対処するために,Scene-Aware機能マッチングのガイドに注目グルーピングを適用したSAMという新しいモデルを提案する。
SAMは、画像トークンとグループトークンのマルチレベル機能をアテンション層で処理し、提案されたトークングループ化モジュールでイメージトークンをグループ化する。
我々のモデルは、地道一致のみで訓練でき、合理的なグループ化結果が得られる。
センスアウェアなグループ化ガイダンスでは、SAMは従来の特徴マッチングモデルよりも正確で堅牢であり、解釈性も高い。
ホモグラフィー推定,ポーズ推定,画像マッチングなど,様々な応用に関する十分な実験により,我々のモデルが最先端の性能を達成することを示す。
関連論文リスト
- Adaptive Prompt Learning with SAM for Few-shot Scanning Probe Microscope Image Segmentation [11.882111844381098]
Segment Anything Model (SAM) は自然シーン画像のイメージセグメンテーションにおいて強い性能を示した。
SAMの有効性は、SPM(Scanning Probe Microscope)画像のような特定の科学的領域に適用すると著しく低下する。
本稿では,数ショットのSPM画像セグメンテーションに適したSAMフレームワークを用いたAdaptive Prompt Learningを提案する。
論文 参考訳(メタデータ) (2024-10-16T13:38:01Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
人間は、ほんのわずかの例に晒された後に、新しい、目に見えない画像を正確に分類する能力を持っている。
人工ニューラルネットワークモデルでは、限られたサンプルを持つ2つのイメージを区別する最も関連性の高い特徴を決定することが課題である。
本稿では,サポートとクエリサンプルをパッチに分割するタスク内相互注意手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T02:02:57Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Weakly-Supervised Concealed Object Segmentation with SAM-based Pseudo
Labeling and Multi-scale Feature Grouping [40.07070188661184]
Wakly-Supervised Concealed Object (WSCOS) は、周囲の環境とうまく融合したオブジェクトを分割することを目的としている。
内在的な類似性のため、背景から隠された物体を区別することは困難である。
これら2つの課題に対処する新しいWSCOS手法を提案する。
論文 参考訳(メタデータ) (2023-05-18T14:31:34Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z) - Co-Attention for Conditioned Image Matching [91.43244337264454]
照明, 視点, コンテキスト, 素材に大きな変化がある場合, 野生のイメージペア間の対応性を決定するための新しい手法を提案する。
他のアプローチでは、イメージを個別に扱うことで、画像間の対応を見出すが、その代わりに、画像間の差異を暗黙的に考慮するよう、両画像に条件を付ける。
論文 参考訳(メタデータ) (2020-07-16T17:32:00Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
数ショット学習シナリオにおけるスケールと位置ミスマッチの影響について検討する。
本稿では,複数のスケールや場所のマッチングを効果的に行うための,空間認識型マッチング手法を提案する。
論文 参考訳(メタデータ) (2020-01-06T14:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。