論文の概要: I3: Intent-Introspective Retrieval Conditioned on Instructions
- arxiv url: http://arxiv.org/abs/2308.10025v2
- Date: Thu, 25 Apr 2024 15:46:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 23:57:24.312364
- Title: I3: Intent-Introspective Retrieval Conditioned on Instructions
- Title(参考訳): I3:インストラクションを前提としたイントロスペクティブ検索
- Authors: Kaihang Pan, Juncheng Li, Wenjie Wang, Hao Fei, Hongye Song, Wei Ji, Jun Lin, Xiaozhong Liu, Tat-Seng Chua, Siliang Tang,
- Abstract要約: I3は,タスク固有の訓練を使わずに,インストラクションに条件付けられた様々なタスクに対して,インテント・イントロスペクティブ検索を行う統合検索システムである。
I3は、特定の検索意図を理解するために、パラメータ分離された方法でプラグ可能なイントロスペクタを組み込む。
LLM生成データを利用してI3フェーズ・バイ・フェイズを訓練し、プログレッシブ・ストラクチャー・プルーニングとドローバック・ベースのデータリファインメントという2つの重要な設計を具現化した。
- 参考スコア(独自算出の注目度): 83.91776238599824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies indicate that dense retrieval models struggle to perform well on a wide variety of retrieval tasks that lack dedicated training data, as different retrieval tasks often entail distinct search intents. To address this challenge, in this work we leverage instructions to flexibly describe retrieval intents and introduce I3, a unified retrieval system that performs Intent-Introspective retrieval across various tasks, conditioned on Instructions without any task-specific training. I3 innovatively incorporates a pluggable introspector in a parameter-isolated manner to comprehend specific retrieval intents by jointly reasoning over the input query and instruction, and seamlessly integrates the introspected intent into the original retrieval model for intent-aware retrieval. Furthermore, we propose progressively-pruned intent learning. It utilizes extensive LLM-generated data to train I3 phase-by-phase, embodying two key designs: progressive structure pruning and drawback extrapolation-based data refinement. Extensive experiments show that in the BEIR benchmark, I3 significantly outperforms baseline methods designed with task-specific retrievers, achieving state-of-the-art zero-shot performance without any task-specific tuning.
- Abstract(参考訳): 近年の研究では、厳密な検索モデルは、特定の学習データを持たない広範囲な検索タスクにおいて、異なる検索タスクが、しばしば異なる検索意図を伴っているため、うまく機能し難いことが示されている。
この課題に対処するために,本研究では,検索意図を柔軟に記述する命令を活用するとともに,タスク固有のトレーニングを伴わずにインストラクションに条件付きで,様々なタスクにわたってインテント・イントロスペクティブ検索を行う統合検索システムであるI3を導入する。
I3は、プラグイン可能なイントロスペクタを、入力クエリと命令を共同で推論することで、特定の検索意図を理解するためのパラメータ分離的な方法で革新的に組み込み、イントロスペクタをイントロスペクタ対応検索のための元の検索モデルにシームレスに統合する。
さらに,段階的に学習する意図学習を提案する。
LLM生成データを利用してI3フェーズ・バイ・フェイズを訓練し、プログレッシブ・ストラクチャー・プルーニング(Progress Structure pruning)とデバック・エクスポーレーション・データ・リファインメント(Droback Extrapolation-based data refinement)という2つの重要な設計を具現した。
BEIRベンチマークでは、I3はタスク特化レトリバーで設計されたベースライン手法を著しく上回り、タスク特化チューニングなしで最先端のゼロショット性能を実現している。
関連論文リスト
- Bootstrapped Pre-training with Dynamic Identifier Prediction for Generative Retrieval [108.9772640854136]
生成検索は、クエリに応答して関連するドキュメント識別子を直接生成するために、識別可能な検索インデックスを使用する。
近年の研究では、微調整による下流検索タスクを強化するために、慎重に訓練された事前学習タスクで訓練された強力な生成検索モデルの可能性を強調している。
生成検索のためのブートストラップ付き事前学習手法であるBootRetを導入し,事前学習中に文書識別子を動的に調整し,コーパスの継続に対応する。
論文 参考訳(メタデータ) (2024-07-16T08:42:36Z) - Instruct-ReID++: Towards Universal Purpose Instruction-Guided Person Re-identification [62.894790379098005]
本稿では,与えられた画像や言語命令に従って,モデルに画像の検索を要求する新しい命令-ReIDタスクを提案する。
Instruct-ReIDは一般的なReID設定の最初の探索であり、既存の6つのReIDタスクを異なる命令を割り当てることで特別なケースとして見ることができる。
本稿では,新しいベースラインモデル IRM を提案する。
論文 参考訳(メタデータ) (2024-05-28T03:35:46Z) - ExcluIR: Exclusionary Neural Information Retrieval [74.08276741093317]
本稿では,排他的検索のためのリソースセットであるExcluIRを提案する。
評価ベンチマークには3,452の高品質な排他的クエリが含まれている。
トレーニングセットには70,293の排他的クエリが含まれており、それぞれに正のドキュメントと負のドキュメントがペアリングされている。
論文 参考訳(メタデータ) (2024-04-26T09:43:40Z) - M3: A Multi-Task Mixed-Objective Learning Framework for Open-Domain Multi-Hop Dense Sentence Retrieval [12.277521531556852]
M3は,高密度テキスト表現学習のためのマルチタスク混合オブジェクトに基づく,新しいマルチホップ高密度文検索システムである。
提案手法は,大規模オープンドメイン事実検証ベンチマークデータセットであるFEVER上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-21T01:52:07Z) - INSTRUCTIR: A Benchmark for Instruction Following of Information
Retrieval Models [32.16908034520376]
検索者は、ユーザの意図した検索コンテキストを掘り下げることなく、クエリ情報のみを優先順位付けする。
本稿では,情報検索タスクにおける指示追従能力の評価に特化して設計された新しいベンチマークINSTRUCTIRを提案する。
InSTRUCTORのようなタスクスタイルの指示に従うように微調整されたレトリバーは、命令なしの命令に比べて性能が劣る。
論文 参考訳(メタデータ) (2024-02-22T06:59:50Z) - QAID: Question Answering Inspired Few-shot Intent Detection [5.516275800944541]
我々は、発話や意図の名前を質問や回答として扱うことにより、質問応答検索タスクとして意図検出を再構築する。
数発のインテント検出ベンチマークの結果から,最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-03-02T21:35:15Z) - Task-aware Retrieval with Instructions [91.87694020194316]
そこで本研究では,検索システムのユーザがクエリとともに意図を明示的に記述する,命令による検索の問題について検討する。
本稿では,多様な検索タスクを指示で訓練したマルチタスク検索システムTARTを提案する。
TARTは命令を通じて新しいタスクに適応する強力な能力を示し、2つのゼロショット検索ベンチマークでテクニックの状態を向上する。
論文 参考訳(メタデータ) (2022-11-16T23:13:22Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
本稿では,タスク固有の命令でPLMを利用する包括的インストラクション(CINS)を提案する。
命令のスキーマ(定義、制約、プロンプト)と、ToDの3つの重要な下流タスクに対するカスタマイズされた実現を設計する。
これらのToDタスクに対して,小さな検証データを用いた現実的な数ショット学習シナリオで実験を行った。
論文 参考訳(メタデータ) (2021-09-10T03:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。