Single Image Reflection Separation via Component Synergy
- URL: http://arxiv.org/abs/2308.10027v1
- Date: Sat, 19 Aug 2023 14:25:27 GMT
- Title: Single Image Reflection Separation via Component Synergy
- Authors: Qiming Hu, Xiaojie Guo
- Abstract summary: The reflection superposition phenomenon is complex and widely distributed in the real world.
We propose a more general form of the superposition model by introducing a learnable residue term.
In order to fully capitalize on its advantages, we further design the network structure elaborately.
- Score: 14.57590565534889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reflection superposition phenomenon is complex and widely distributed in
the real world, which derives various simplified linear and nonlinear
formulations of the problem. In this paper, based on the investigation of the
weaknesses of existing models, we propose a more general form of the
superposition model by introducing a learnable residue term, which can
effectively capture residual information during decomposition, guiding the
separated layers to be complete. In order to fully capitalize on its
advantages, we further design the network structure elaborately, including a
novel dual-stream interaction mechanism and a powerful decomposition network
with a semantic pyramid encoder. Extensive experiments and ablation studies are
conducted to verify our superiority over state-of-the-art approaches on
multiple real-world benchmark datasets. Our code is publicly available at
https://github.com/mingcv/DSRNet.
Related papers
- Layer-wise Representation Fusion for Compositional Generalization [26.771056871444692]
A key reason for failure on compositional generalization is that the syntactic and semantic representations of sequences in both the uppermost layer of the encoder and decoder are entangled.
We explain why it exists by analyzing the representation evolving mechanism from the bottom to the top of the Transformer layers.
Inspired by this, we propose LRF, a novel textbfLayer-wise textbfRepresentation textbfFusion framework for CG, which learns to fuse previous layers' information back into the encoding and decoding process.
arXiv Detail & Related papers (2023-07-20T12:01:40Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Feedback Pyramid Attention Networks for Single Image Super-Resolution [37.58180059860872]
We propose feedback pyramid attention networks (FPAN) to fully exploit the mutual dependencies of features.
In our method, the output of each layer in the first stage is also used as the input of the corresponding layer in the next state to re-update the previous low-level filters.
We introduce a pyramid non-local structure to model global contextual information in different scales and improve the discriminative representation of the network.
arXiv Detail & Related papers (2021-06-13T11:32:53Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z) - Layer-stacked Attention for Heterogeneous Network Embedding [0.0]
Layer-stacked ATTention Embedding (LATTE) is an architecture that automatically decomposes higher-order meta relations at each layer.
LATTE offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges.
In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches.
arXiv Detail & Related papers (2020-09-17T05:13:41Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Recursive Multi-model Complementary Deep Fusion forRobust Salient Object
Detection via Parallel Sub Networks [62.26677215668959]
Fully convolutional networks have shown outstanding performance in the salient object detection (SOD) field.
This paper proposes a wider'' network architecture which consists of parallel sub networks with totally different network architectures.
Experiments on several famous benchmarks clearly demonstrate the superior performance, good generalization, and powerful learning ability of the proposed wider framework.
arXiv Detail & Related papers (2020-08-07T10:39:11Z) - Multi-Scale Boosted Dehazing Network with Dense Feature Fusion [92.92572594942071]
We propose a Multi-Scale Boosted Dehazing Network with Dense Feature Fusion based on the U-Net architecture.
We show that the proposed model performs favorably against the state-of-the-art approaches on the benchmark datasets as well as real-world hazy images.
arXiv Detail & Related papers (2020-04-28T09:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.