Mimicking To Dominate: Imitation Learning Strategies for Success in
Multiagent Competitive Games
- URL: http://arxiv.org/abs/2308.10188v1
- Date: Sun, 20 Aug 2023 07:30:13 GMT
- Title: Mimicking To Dominate: Imitation Learning Strategies for Success in
Multiagent Competitive Games
- Authors: The Viet Bui and Tien Mai and Thanh Hong Nguyen
- Abstract summary: We develop a new multi-agent imitation learning model for predicting next moves of the opponents.
We also present a new multi-agent reinforcement learning algorithm that combines our imitation learning model and policy training into one single training process.
Experimental results show that our approach achieves superior performance compared to existing state-of-the-art multi-agent RL algorithms.
- Score: 13.060023718506917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training agents in multi-agent competitive games presents significant
challenges due to their intricate nature. These challenges are exacerbated by
dynamics influenced not only by the environment but also by opponents'
strategies. Existing methods often struggle with slow convergence and
instability. To address this, we harness the potential of imitation learning to
comprehend and anticipate opponents' behavior, aiming to mitigate uncertainties
with respect to the game dynamics. Our key contributions include: (i) a new
multi-agent imitation learning model for predicting next moves of the opponents
-- our model works with hidden opponents' actions and local observations; (ii)
a new multi-agent reinforcement learning algorithm that combines our imitation
learning model and policy training into one single training process; and (iii)
extensive experiments in three challenging game environments, including an
advanced version of the Star-Craft multi-agent challenge (i.e., SMACv2).
Experimental results show that our approach achieves superior performance
compared to existing state-of-the-art multi-agent RL algorithms.
Related papers
- Generating Personas for Games with Multimodal Adversarial Imitation
Learning [47.70823327747952]
Reinforcement learning has been widely successful in producing agents capable of playing games at a human level.
Going beyond reinforcement learning is necessary to model a wide range of human playstyles.
This paper presents a novel imitation learning approach to generate multiple persona policies for playtesting.
arXiv Detail & Related papers (2023-08-15T06:58:19Z) - DIAMBRA Arena: a New Reinforcement Learning Platform for Research and
Experimentation [91.3755431537592]
This work presents DIAMBRA Arena, a new platform for reinforcement learning research and experimentation.
It features a collection of high-quality environments exposing a Python API fully compliant with OpenAI Gym standard.
They are episodic tasks with discrete actions and observations composed by raw pixels plus additional numerical values.
arXiv Detail & Related papers (2022-10-19T14:39:10Z) - Coach-assisted Multi-Agent Reinforcement Learning Framework for
Unexpected Crashed Agents [120.91291581594773]
We present a formal formulation of a cooperative multi-agent reinforcement learning system with unexpected crashes.
We propose a coach-assisted multi-agent reinforcement learning framework, which introduces a virtual coach agent to adjust the crash rate during training.
To the best of our knowledge, this work is the first to study the unexpected crashes in the multi-agent system.
arXiv Detail & Related papers (2022-03-16T08:22:45Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
We study the problem of conditional multi-agent imitation learning, where we have access to joint trajectory demonstrations at training time.
We propose a novel approach to address the difficulties of scalability and data scarcity.
Our model learns a low-rank subspace over ego and partner agent strategies, then infers and adapts to a new partner strategy by interpolating in the subspace.
arXiv Detail & Related papers (2022-01-05T04:40:13Z) - MORAL: Aligning AI with Human Norms through Multi-Objective Reinforced
Active Learning [14.06682547001011]
State-of-the art methods typically focus on learning a single reward model.
We propose Multi-Objective Reinforced Active Learning (MORAL), a novel method for combining diverse demonstrations of social norms.
Our approach is able to interactively tune a deep RL agent towards a variety of preferences, while eliminating the need for computing multiple policies.
arXiv Detail & Related papers (2021-12-30T19:21:03Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Multiagent Deep Reinforcement Learning: Challenges and Directions
Towards Human-Like Approaches [0.0]
We present the most common multiagent problem representations and their main challenges.
We identify five research areas that address one or more of these challenges.
We suggest that, for multiagent reinforcement learning to be successful, future research addresses these challenges with an interdisciplinary approach.
arXiv Detail & Related papers (2021-06-29T19:53:15Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - Opponent Learning Awareness and Modelling in Multi-Objective Normal Form
Games [5.0238343960165155]
It is essential for an agent to learn about the behaviour of other agents in the system.
We present the first study of the effects of such opponent modelling on multi-objective multi-agent interactions with non-linear utilities.
arXiv Detail & Related papers (2020-11-14T12:35:32Z) - Learning to Model Opponent Learning [11.61673411387596]
Multi-Agent Reinforcement Learning (MARL) considers settings in which a set of coexisting agents interact with one another and their environment.
This poses a great challenge for value function-based algorithms whose convergence usually relies on the assumption of a stationary environment.
We develop a novel approach to modelling an opponent's learning dynamics which we term Learning to Model Opponent Learning (LeMOL)
arXiv Detail & Related papers (2020-06-06T17:19:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.