論文の概要: Hiding Backdoors within Event Sequence Data via Poisoning Attacks
- arxiv url: http://arxiv.org/abs/2308.10201v2
- Date: Sun, 25 Aug 2024 16:47:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 01:07:17.591372
- Title: Hiding Backdoors within Event Sequence Data via Poisoning Attacks
- Title(参考訳): 攻撃行為によるイベントシーケンスデータ内のバックドアの保持
- Authors: Alina Ermilova, Elizaveta Kovtun, Dmitry Berestnev, Alexey Zaytsev,
- Abstract要約: コンピュータビジョンでは、毒という敵の攻撃を行うことで、推論中に出力を形作ることができる。
顧客の金融取引のシーケンスでは、バックドアの挿入は困難である。
クリーンなモデルを、バックドアの可用性を認識して、この知識を活用する有毒なものに置き換える。
- 参考スコア(独自算出の注目度): 2.532893215351299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The financial industry relies on deep learning models for making important decisions. This adoption brings new danger, as deep black-box models are known to be vulnerable to adversarial attacks. In computer vision, one can shape the output during inference by performing an adversarial attack called poisoning via introducing a backdoor into the model during training. For sequences of financial transactions of a customer, insertion of a backdoor is harder to perform, as models operate over a more complex discrete space of sequences, and systematic checks for insecurities occur. We provide a method to introduce concealed backdoors, creating vulnerabilities without altering their functionality for uncontaminated data. To achieve this, we replace a clean model with a poisoned one that is aware of the availability of a backdoor and utilize this knowledge. Our most difficult for uncovering attacks include either additional supervised detection step of poisoned data activated during the test or well-hidden model weight modifications. The experimental study provides insights into how these effects vary across different datasets, architectures, and model components. Alternative methods and baselines, such as distillation-type regularization, are also explored but found to be less efficient. Conducted on three open transaction datasets and architectures, including LSTM, CNN, and Transformer, our findings not only illuminate the vulnerabilities in contemporary models but also can drive the construction of more robust systems.
- Abstract(参考訳): 金融業界は重要な意思決定を行うためのディープラーニングモデルに依存している。
この採用は、深いブラックボックスモデルが敵の攻撃に弱いことが知られているため、新たな危険をもたらす。
コンピュータビジョンでは、トレーニング中にモデルにバックドアを導入することで、毒殺と呼ばれる敵の攻撃を行うことで、推論中に出力を形作ることができる。
顧客の金融取引のシーケンスでは、モデルがより複雑な個別のシーケンス空間上で動作し、不正確なシステマティックチェックが発生するため、バックドアの挿入が難しくなる。
隠れたバックドアを導入し、汚染されていないデータの機能を変更せずに脆弱性を発生させる方法を提供する。
これを実現するため,バックドアの有効性を認識し,その知識を生かしたクリーンモデルと有毒モデルとを置き換えた。
攻撃を明らかにするのに最も難しいのは、テスト中にアクティベートされた有毒なデータの教師付き検出ステップの追加か、よく隠されたモデルウェイト修正のいずれかです。
実験的な研究は、これらの効果がどのように異なるデータセット、アーキテクチャ、モデルコンポーネントによって異なるかについての洞察を提供する。
蒸留型正則化などの代替法やベースラインも検討されているが、効率は低かった。
LSTM、CNN、Transformerを含む3つのオープントランザクションデータセットとアーキテクチャに基づいて、我々の発見は、現代のモデルの脆弱性を照らすだけでなく、より堅牢なシステムの構築を促進することができる。
関連論文リスト
- Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models [68.40324627475499]
本稿では,Expose Before You Defendという新しい2段階防衛フレームワークを紹介する。
EBYDは既存のバックドア防御手法を総合防衛システムに統合し、性能を向上する。
2つの視覚データセットと4つの言語データセットにまたがる10のイメージアタックと6つのテキストアタックに関する広範な実験を行います。
論文 参考訳(メタデータ) (2024-10-25T09:36:04Z) - Mellivora Capensis: A Backdoor-Free Training Framework on the Poisoned Dataset without Auxiliary Data [29.842087372804905]
本稿では,現実シナリオにおけるバックドア攻撃対策の課題について述べる。
本稿では,モデルトレーナーが有毒なデータセット上でクリーンなモデルをトレーニングできるようにする,堅牢でクリーンなデータのないバックドア防御フレームワークであるMellivora Capensis(textttMeCa)を提案する。
論文 参考訳(メタデータ) (2024-05-21T12:20:19Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
バックドア検出のためのオープンセット分類タスクにモデルペアを用いることを提案する。
このスコアは、異なるアーキテクチャのモデルがあるにもかかわらず、バックドアの存在を示す指標であることを示している。
この技術は、オープンセット分類タスク用に設計されたモデル上のバックドアの検出を可能にするが、文献ではほとんど研究されていない。
論文 参考訳(メタデータ) (2024-02-28T21:29:16Z) - Leveraging Diffusion-Based Image Variations for Robust Training on
Poisoned Data [26.551317580666353]
バックドア攻撃は、ニューラルネットワークをトレーニングする上で深刻なセキュリティ上の脅威となる。
本稿では,近年の拡散モデルのパワーを生かして,潜在的に有毒なデータセットのモデルトレーニングを可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-10T07:25:06Z) - Backdoor Learning on Sequence to Sequence Models [94.23904400441957]
本稿では,シークエンス・ツー・シークエンス(seq2seq)モデルがバックドア攻撃に対して脆弱かどうかを検討する。
具体的には、データセットの0.2%のサンプルを注入するだけで、Seq2seqモデルに指定されたキーワードと文全体を生成することができる。
機械翻訳とテキスト要約に関する大規模な実験を行い、提案手法が複数のデータセットやモデルに対して90%以上の攻撃成功率を達成することを示した。
論文 参考訳(メタデータ) (2023-05-03T20:31:13Z) - DeepSight: Mitigating Backdoor Attacks in Federated Learning Through
Deep Model Inspection [26.593268413299228]
フェデレートラーニング(FL)では、複数のクライアントが、データを公開せずに、プライベートデータ上でニューラルネットワーク(NN)モデルを協調的にトレーニングすることができる。
DeepSightは、バックドア攻撃を緩和するための新しいモデルフィルタリングアプローチである。
モデルの性能に悪影響を及ぼすことなく、最先端のバックドア攻撃を軽減できることを示す。
論文 参考訳(メタデータ) (2022-01-03T17:10:07Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - Systematic Evaluation of Backdoor Data Poisoning Attacks on Image
Classifiers [6.352532169433872]
コンピュータビジョン研究において、機械学習(ML)システムの潜在的な安全性リスクとして、バックドアデータ中毒攻撃が実証されている。
我々の研究は、ML画像分類器のための事前のバックドアデータポゾン研究に基づいている。
有毒なモデルでは、パフォーマンス検査だけでは検出が難しいことが分かりました。
論文 参考訳(メタデータ) (2020-04-24T02:58:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。