論文の概要: Learning Disentangled Representation with Mutual Information
Maximization for Real-Time UAV Tracking
- arxiv url: http://arxiv.org/abs/2308.10262v1
- Date: Sun, 20 Aug 2023 13:16:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 16:37:48.604291
- Title: Learning Disentangled Representation with Mutual Information
Maximization for Real-Time UAV Tracking
- Title(参考訳): リアルタイムUAV追跡のための相互情報の最大化による遠交表現の学習
- Authors: Xucheng Wang, Xiangyang Yang, Hengzhou Ye, Shuiwang Li
- Abstract要約: 本稿では,相互情報(DR-MIM)による不整合表現を利用して,UAV追跡の精度と効率を向上させる。
我々のDR-MIMトラッカーは最先端のUAVトラッカーよりも優れています。
- 参考スコア(独自算出の注目度): 1.0541541376305243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficiency has been a critical problem in UAV tracking due to limitations in
computation resources, battery capacity, and unmanned aerial vehicle maximum
load. Although discriminative correlation filters (DCF)-based trackers prevail
in this field for their favorable efficiency, some recently proposed
lightweight deep learning (DL)-based trackers using model compression
demonstrated quite remarkable CPU efficiency as well as precision.
Unfortunately, the model compression methods utilized by these works, though
simple, are still unable to achieve satisfying tracking precision with higher
compression rates. This paper aims to exploit disentangled representation
learning with mutual information maximization (DR-MIM) to further improve
DL-based trackers' precision and efficiency for UAV tracking. The proposed
disentangled representation separates the feature into an identity-related and
an identity-unrelated features. Only the latter is used, which enhances the
effectiveness of the feature representation for subsequent classification and
regression tasks. Extensive experiments on four UAV benchmarks, including
UAV123@10fps, DTB70, UAVDT and VisDrone2018, show that our DR-MIM tracker
significantly outperforms state-of-the-art UAV tracking methods.
- Abstract(参考訳): 効率性は、計算資源の制限、バッテリー容量、無人航空機の最大負荷のために、UAVトラッキングにおいて重大な問題となっている。
判別相関フィルタ (DCF) に基づくトラッカーは, 高い効率でこの分野に普及しているが, 最近, モデル圧縮を用いた軽量深層学習 (DL) ベースのトラッカーを提案すると, CPU効率と精度が著しく向上した。
残念なことに、これらの研究で利用されるモデル圧縮法は単純ではあるが、高い圧縮速度で追従精度を満足できない。
本稿では,相互情報最大化(DR-MIM)による非絡み合い表現学習を活用し,DLベーストラッカーの精度向上とUAV追跡の効率化を図ることを目的とする。
提案した不整合表現は、特徴をアイデンティティ関連およびアイデンティティ非関連の特徴に分離する。
後者のみが使用され、その後の分類と回帰タスクにおける特徴表現の有効性を高める。
UAV123@10fps、DTB70、UAVDT、VisDrone2018を含む4つのUAVベンチマークの大規模な実験は、我々のDR-MIMトラッカーが最先端のUAVトラッキング方法を大幅に上回っていることを示している。
関連論文リスト
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
本稿では,無人航空機(UAV)映像における多物体追跡の問題に対処する。
交通監視システムや警察によるリアルタイム容疑者追跡など、様々なUAVアプリケーションにおいて重要な役割を果たしている。
低信頼度検出から対象物体の追跡を開始する新しい追跡戦略を提案する。
論文 参考訳(メタデータ) (2024-10-26T05:09:20Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
トレーニング済みのViTバックボーンを使用したシングルストリームアーキテクチャでは、パフォーマンス、効率、堅牢性が改善されている。
リアルタイムなUAV追跡のためにTransformerブロックを動的に終了する適応型フレームワークにすることで、このフレームワークの効率を向上する。
また, 動きのぼかし処理におけるViTsの有効性も改善した。これは, UAV, 追跡対象の速さ, あるいはその両方によって生じるUAVトラッキングの共通問題である。
論文 参考訳(メタデータ) (2024-07-07T14:10:04Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Towards Discriminative Representations with Contrastive Instances for
Real-Time UAV Tracking [5.557099240958562]
識別相関フィルタ(DCF)ベースのトラッカーは、単一のCPU上で高い効率が得られるが、精度は劣る。
軽量ディープラーニング(DL)ベースのトラッカーは効率と精度のバランスが良いが,性能向上は圧縮速度によって制限される。
本稿では,新しい特徴学習の観点から特徴表現の識別力を高めることを目的とする。
論文 参考訳(メタデータ) (2023-08-22T13:58:45Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Rank-Based Filter Pruning for Real-Time UAV Tracking [11.740436885164833]
無人航空機(UAV)の追跡は、農業、航法、公共の安全など、幅広い可能性を持つ。
識別相関フィルタ (DCF) トラッカーは, 高い効率性のため, UAV追跡コミュニティにおいて際立っている。
モデル圧縮は、DCFとディープラーニングベースのトラッカーのギャップを狭めるための有望な方法である。
論文 参考訳(メタデータ) (2022-07-05T02:13:53Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
実用的長期トラッカーは、典型的には3つの重要な特性を含む。
効率的なモデル設計、効果的なグローバル再検出戦略、堅牢な気晴らし認識メカニズム。
動的畳み込み (d-convs) と多重オブジェクト追跡 (MOT) の哲学を用いて, 注意をそらした高速トラッキングを実現するための2タスクトラッキングフレームワーク(DMTrack)を提案する。
我々のトラッカーはLaSOT, OxUvA, TLP, VOT2018LT, VOT 2019LTベンチマークの最先端性能を実現し, リアルタイム3倍高速に動作させる。
論文 参考訳(メタデータ) (2021-04-25T00:59:53Z) - Learning Residue-Aware Correlation Filters and Refining Scale Estimates
with the GrabCut for Real-Time UAV Tracking [12.718396980204961]
無人航空機(UAV)ベースの追跡はますます注目を集め、農業、航空、ナビゲーション、輸送、公安などのアプリケーションで急速に発展しています。
近年,1つのCPU上での高い効率とロバスト性のために,識別相関フィルタ(DCF)ベースのトラッカーがUAVトラッキングコミュニティで注目されている。
本稿では,GrabCutによるセグメンテーションによるDCFトラッカーの判別スケール推定の改善について検討する。
論文 参考訳(メタデータ) (2021-04-07T13:35:01Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
本稿では,2段階の逐次回帰トラッカーを提案する。
第1段階では, 容易に同定可能な負の候補を抽出する。
第2段階では、残留するあいまいな硬質試料をダブルチェックするために、離散サンプリングに基づくリッジ回帰を設計する。
論文 参考訳(メタデータ) (2020-06-18T07:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。