論文の概要: Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis
- arxiv url: http://arxiv.org/abs/2308.10282v1
- Date: Sun, 20 Aug 2023 14:31:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 16:29:04.485360
- Title: Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis
- Title(参考訳): 都市活動分析による時空間交通予測の強化
- Authors: Sumin Han and Youngjun Park and Minji Lee and Jisun An and Dongman Lee
- Abstract要約: 本稿では,グラフ畳み込み深層学習アルゴリズムに基づく交通予測手法を提案する。
本研究では,宮内庁旅行調査の人的活動頻度データを活用し,活動と交通パターンの因果関係の推測能力を高める。
- 参考スコア(独自算出の注目度): 6.8775337739726226
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traffic prediction is one of the key elements to ensure the safety and
convenience of citizens. Existing traffic prediction models primarily focus on
deep learning architectures to capture spatial and temporal correlation. They
often overlook the underlying nature of traffic. Specifically, the sensor
networks in most traffic datasets do not accurately represent the actual road
network exploited by vehicles, failing to provide insights into the traffic
patterns in urban activities. To overcome these limitations, we propose an
improved traffic prediction method based on graph convolution deep learning
algorithms. We leverage human activity frequency data from National Household
Travel Survey to enhance the inference capability of a causal relationship
between activity and traffic patterns. Despite making minimal modifications to
the conventional graph convolutional recurrent networks and graph convolutional
transformer architectures, our approach achieves state-of-the-art performance
without introducing excessive computational overhead.
- Abstract(参考訳): 交通予測は市民の安全と利便性を確保するための重要な要素の1つである。
既存の交通予測モデルは、主に空間的および時間的相関を捉えるディープラーニングアーキテクチャに焦点を当てている。
彼らはしばしば交通の根底にある性質を見落としている。
特に、ほとんどの交通データセットのセンサーネットワークは、車両が利用している実際の道路ネットワークを正確に表現するものではなく、都市活動における交通パターンに関する洞察を提供していない。
これらの制限を克服するために,グラフ畳み込み深層学習アルゴリズムに基づくトラフィック予測手法を提案する。
本研究では,宮内庁旅行調査の人的活動頻度データを活用し,活動と交通パターンの因果関係の推測能力を高める。
従来のグラフ畳み込みリカレントネットワークやグラフ畳み込みトランスフォーマアーキテクチャに最小限の変更を加えながらも,計算オーバーヘッドを過大に発生させることなく,最先端の性能を実現する。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
本稿では,時間変動動的ネットワークを組み込んだトラフィック予測手法を提案する。
次に、グラフ畳み込みネットワークを使用してトラフィック予測を生成します。
実交通データを用いた実験結果から,提案手法の予測性能が優れていることを示す。
論文 参考訳(メタデータ) (2023-06-12T10:46:31Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
インテリジェントなトラフィック管理と制御における意思決定には,リアルタイムなトラフィック予測が不可欠だ。
本稿では,トラフィック生成のメカニズムを事前に学習するTraffNetという単純なディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T13:12:17Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Spatial-Temporal Tensor Graph Convolutional Network for Traffic
Prediction [46.762437988118386]
本稿では,交通速度予測に対処する空間時間グラフ畳み込みネットワークを提案する。
計算負荷を軽減するために、タッカーテンソル分解を行い、テンソル畳み込みを導出する。
2つの実世界の交通速度データセットの実験は、従来の交通予測方法よりも効果的な方法を示しています。
論文 参考訳(メタデータ) (2021-03-10T15:28:07Z) - Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic
Prediction with Navigation Data [7.394726159860848]
本稿では,今後の交通量のデータを活用することで,将来の走行時間を「推定」できるHybrid Spatio-Temporal Graph Convolutional Network (H-STGCN)を提案する。
以上の結果から,H-STGCNは様々な指標,特に非再帰性渋滞の予測において,最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-06-23T03:25:48Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。