Preserving Specificity in Federated Graph Learning for fMRI-based
Neurological Disorder Identification
- URL: http://arxiv.org/abs/2308.10302v1
- Date: Sun, 20 Aug 2023 15:55:45 GMT
- Title: Preserving Specificity in Federated Graph Learning for fMRI-based
Neurological Disorder Identification
- Authors: Junhao Zhang, Qianqian Wang, Xiaochuan Wang, Lishan Qiao, Mingxia Liu
- Abstract summary: We propose a specificity-aware graph learning framework for rs-fMRI analysis and automated brain disorder identification.
At each client, our model consists of a shared and a personalized branch, where parameters of the shared branch are sent to the server while those of the personalized branch remain local.
Experimental results on two fMRI datasets with a total of 1,218 subjects suggest SFGL outperforms several state-of-the-art approaches.
- Score: 31.668499876984487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resting-state functional magnetic resonance imaging (rs-fMRI) offers a
non-invasive approach to examining abnormal brain connectivity associated with
brain disorders. Graph neural network (GNN) gains popularity in fMRI
representation learning and brain disorder analysis with powerful graph
representation capabilities. Training a general GNN often necessitates a
large-scale dataset from multiple imaging centers/sites, but centralizing
multi-site data generally faces inherent challenges related to data privacy,
security, and storage burden. Federated Learning (FL) enables collaborative
model training without centralized multi-site fMRI data. Unfortunately,
previous FL approaches for fMRI analysis often ignore site-specificity,
including demographic factors such as age, gender, and education level. To this
end, we propose a specificity-aware federated graph learning (SFGL) framework
for rs-fMRI analysis and automated brain disorder identification, with a server
and multiple clients/sites for federated model aggregation and prediction. At
each client, our model consists of a shared and a personalized branch, where
parameters of the shared branch are sent to the server while those of the
personalized branch remain local. This can facilitate knowledge sharing among
sites and also helps preserve site specificity. In the shared branch, we employ
a spatio-temporal attention graph isomorphism network to learn dynamic fMRI
representations. In the personalized branch, we integrate vectorized
demographic information (i.e., age, gender, and education years) and functional
connectivity networks to preserve site-specific characteristics.
Representations generated by the two branches are then fused for
classification. Experimental results on two fMRI datasets with a total of 1,218
subjects suggest that SFGL outperforms several state-of-the-art approaches.
Related papers
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - JGAT: a joint spatio-temporal graph attention model for brain decoding [8.844033583141039]
Joint kernel Graph Attention Network (JGAT) is a new multi-modal temporal graph attention network framework.
It integrates the data from functional Magnetic Resonance Images (fMRI) and Diffusion Weighted Imaging (DWI) while preserving the dynamic information.
We conduct brain-decoding tasks with our JGAT on four independent datasets.
arXiv Detail & Related papers (2023-06-03T02:45:03Z) - Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with
Graph Neural Networks [28.460737693330245]
We propose TBDS, an end-to-end framework based on underlineTask-aware underlineBrain connectivity underlineDAG for fMRI analysis.
The key component of TBDS is the brain network generator which adopts a DAG learning approach to transform the raw time-series into task-aware brain connectivities.
Comprehensive experiments on two fMRI datasets demonstrate the efficacy of TBDS.
arXiv Detail & Related papers (2022-11-01T03:59:54Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Secure & Private Federated Neuroimaging [17.946206585229675]
Federated Learning enables distributed training of neural network models over multiple data sources without sharing data.
Each site trains the neural network over its private data for some time, then shares the neural network parameters with a Federation Controller.
Our Federated Learning architecture, MetisFL, provides strong security and privacy.
arXiv Detail & Related papers (2022-05-11T03:36:04Z) - Identifying Autism Spectrum Disorder Based on Individual-Aware
Down-Sampling and Multi-Modal Learning [4.310840361752551]
We propose a novel feature extraction method for fMRI that can learn a personalized lowe-resolution representation of the entire brain networking.
The present model has achieved a mean classification accuracy of 85.95% and a mean AUC of 0.92, which is better than the state-of-the-art methods.
arXiv Detail & Related papers (2021-09-19T14:22:55Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z) - Understanding Graph Isomorphism Network for rs-fMRI Functional
Connectivity Analysis [49.05541693243502]
We develop a framework for analyzing fMRI data using the Graph Isomorphism Network (GIN)
One of the important contributions of this paper is the observation that the GIN is a dual representation of convolutional neural network (CNN) in the graph space.
We exploit CNN-based saliency map techniques for the GNN, which we tailor to the proposed GIN with one-hot encoding.
arXiv Detail & Related papers (2020-01-10T23:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.