JGAT: a joint spatio-temporal graph attention model for brain decoding
- URL: http://arxiv.org/abs/2306.05286v1
- Date: Sat, 3 Jun 2023 02:45:03 GMT
- Title: JGAT: a joint spatio-temporal graph attention model for brain decoding
- Authors: Han Yi Chiu, Liang Zhao, Anqi Wu
- Abstract summary: Joint kernel Graph Attention Network (JGAT) is a new multi-modal temporal graph attention network framework.
It integrates the data from functional Magnetic Resonance Images (fMRI) and Diffusion Weighted Imaging (DWI) while preserving the dynamic information.
We conduct brain-decoding tasks with our JGAT on four independent datasets.
- Score: 8.844033583141039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The decoding of brain neural networks has been an intriguing topic in
neuroscience for a well-rounded understanding of different types of brain
disorders and cognitive stimuli. Integrating different types of connectivity,
e.g., Functional Connectivity (FC) and Structural Connectivity (SC), from
multi-modal imaging techniques can take their complementary information into
account and therefore have the potential to get better decoding capability.
However, traditional approaches for integrating FC and SC overlook the
dynamical variations, which stand a great chance to over-generalize the brain
neural network. In this paper, we propose a Joint kernel Graph Attention
Network (JGAT), which is a new multi-modal temporal graph attention network
framework. It integrates the data from functional Magnetic Resonance Images
(fMRI) and Diffusion Weighted Imaging (DWI) while preserving the dynamic
information at the same time. We conduct brain-decoding tasks with our JGAT on
four independent datasets: three of 7T fMRI datasets from the Human Connectome
Project (HCP) and one from animal neural recordings. Furthermore, with
Attention Scores (AS) and Frame Scores (FS) computed and learned from the
model, we can locate several informative temporal segments and build meaningful
dynamical pathways along the temporal domain for the HCP datasets. The URL to
the code of JGAT model: https://github.com/BRAINML-GT/JGAT.
Related papers
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
This paper builds an efficient graph neural network model that incorporates both region-mapped fMRI sequences and structural connectivities as inputs.
We find good representations of the latent brain dynamics through learning sample-level adaptive adjacency matrices.
These modules can be easily adapted to and are potentially useful for other applications outside the neuroscience domain.
arXiv Detail & Related papers (2022-05-23T21:57:31Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
Graph neural networks (GNNs) provide a possibility to interpret new structured graph signals.
We show that by learning localized functional interactions on the substrate, GNN based approaches are able to robustly scale to large network studies.
arXiv Detail & Related papers (2021-12-08T12:57:13Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static backbone.
We present a graph neural network (GNN) framework to describe functional interactions based on structural anatomical layout.
We show that GNNs are able to capture long-term dependencies in data and also scale up to the analysis of large-scale networks.
arXiv Detail & Related papers (2020-10-14T15:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.