論文の概要: False Negative/Positive Control for SAM on Noisy Medical Images
- arxiv url: http://arxiv.org/abs/2308.10382v1
- Date: Sun, 20 Aug 2023 23:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 15:50:54.944417
- Title: False Negative/Positive Control for SAM on Noisy Medical Images
- Title(参考訳): ノイズ医学画像におけるSAMの偽陰性/正の制御
- Authors: Xing Yao, Han Liu, Dewei Hu, Daiwei Lu, Ange Lou, Hao Li, Ruining
Deng, Gabriel Arenas, Baris Oguz, Nadav Schwartz, Brett C Byram, Ipek Oguz
- Abstract要約: Segment Anything Model (SAM) は画像セグメンテーションのための全範囲基盤モデルである。
医療画像のセグメンテーションにおけるSAMの性能向上を目的とした改良されたテストフェーズプロンプト拡張手法を提案する。
ノイズの多い低コントラストの医用画像においても,SAMの有効利用が可能となった。
- 参考スコア(独自算出の注目度): 10.654917277821495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Segment Anything Model (SAM) is a recently developed all-range foundation
model for image segmentation. It can use sparse manual prompts such as bounding
boxes to generate pixel-level segmentation in natural images but struggles in
medical images such as low-contrast, noisy ultrasound images. We propose a
refined test-phase prompt augmentation technique designed to improve SAM's
performance in medical image segmentation. The method couples multi-box prompt
augmentation and an aleatoric uncertainty-based false-negative (FN) and
false-positive (FP) correction (FNPC) strategy. We evaluate the method on two
ultrasound datasets and show improvement in SAM's performance and robustness to
inaccurate prompts, without the necessity for further training or tuning.
Moreover, we present the Single-Slice-to-Volume (SS2V) method, enabling 3D
pixel-level segmentation using only the bounding box annotation from a single
2D slice. Our results allow efficient use of SAM in even noisy, low-contrast
medical images. The source code will be released soon.
- Abstract(参考訳): Segment Anything Model (SAM) は画像セグメンテーションのための全範囲基盤モデルである。
自然な画像のピクセルレベルのセグメンテーションを生成するために、ボックスのバウンディングなどの手動プロンプトを使用するが、低コントラスト、ノイズのある超音波画像のような医療画像では苦労する。
医療画像のセグメンテーションにおけるSAMの性能向上を目的とした改良されたテストフェーズプロンプト拡張手法を提案する。
この方法は、マルチボックスプロンプト増強と、アレタリック不確実性に基づく偽陰性(FN)と偽陽性(FP)補正(FNPC)戦略を結合する。
提案手法を2つの超音波データセット上で評価し,さらにトレーニングやチューニングを行う必要がなく,SAMの性能向上と不正確なプロンプトに対する堅牢性を示す。
さらに,ss2v(single-slice-to-volume)法を提案する。1つの2dスライスからバウンディングボックスアノテーションのみを使用して,3dピクセルレベルのセグメンテーションを実現する。
ノイズの多い低コントラストの医用画像においても,SAMの有効利用が可能となった。
ソースコードはまもなくリリースされる予定だ。
関連論文リスト
- RevSAM2: Prompt SAM2 for Medical Image Segmentation via Reverse-Propagation without Fine-tuning [4.590933790796203]
本稿では,医療画像セグメンテーションのための簡易かつ効果的な自己補正フレームワークであるRevSAM2を紹介する。
RevSAM2は、微調整を必要とせず、目に見えない3D画像分割タスクにおいて優れた性能を発揮する。
我々は,ラベル効率の良い医用画像セグメンテーションにおけるSAM2の可能性について,微調整なしで初めて検討した。
論文 参考訳(メタデータ) (2024-09-06T14:17:09Z) - SAM Fewshot Finetuning for Anatomical Segmentation in Medical Images [3.2099042811875833]
医用画像の解剖学的セグメンテーションタスクにSAM(Seegment Anything)を適用するための戦略を提案する。
画像埋め込みで取得した解剖学的クエリーオブジェクトのプロンプトとして,ラベル付き画像の限られたセットから得られる少数ショット埋め込みを利用する。
本手法は,キャッシング機構を用いてマスクデコーダのみをトレーニングすることにより,微調整プロセスの効率化を優先する。
論文 参考訳(メタデータ) (2024-07-05T17:07:25Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - Uncertainty-Aware Adapter: Adapting Segment Anything Model (SAM) for Ambiguous Medical Image Segmentation [20.557472889654758]
Segment Anything Model (SAM) は自然画像のセグメンテーションにおいて大きな成功を収めた。
自然画像とは異なり、医療画像の多くの組織や病変はぼやけており、曖昧である可能性がある。
本研究では,不確実性を認識した医療画像のセグメンテーションのためにSAMを効率よく微調整するUncertainty-aware Adapterという新しいモジュールを提案する。
論文 参考訳(メタデータ) (2024-03-16T14:11:54Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
提案するI-MedSAMは、連続表現とSAMの両方の利点を利用して、クロスドメイン能力と正確な境界線を求める。
トレーニング可能なパラメータが1.6Mしかない提案手法は、離散的および暗黙的を含む既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-28T00:43:52Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
我々は,Segment Anything Model (SAM) のためのトレーニング不要なパーソナライズ手法を提案する。
PerSAMは、参照マスクを持つ1つのイメージしか持たないため、最初にターゲットのコンセプトを以前のロケーションでローカライズする。
PerSAMは、ターゲット誘導された注意、ターゲットセマンティックなプロンプト、そしてカスケードされたポストリファインメントという3つのテクニックを通じて、他の画像やビデオにセグメントする。
論文 参考訳(メタデータ) (2023-05-04T17:59:36Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。